Strongly Convergent Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces

被引:0
|
作者
Akashi, Shigeo [1 ]
Kimura, Yasunori [2 ]
Takahashi, Wataru [3 ,4 ,5 ]
机构
[1] Tokyo Univ Sci, Dept Informat Sci, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan
[2] Toho Univ, Dept Informat Sci, Chiba 2748510, Japan
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[4] Keio Univ, Keio Res & Educ Ctr Nat Sci, Tokyo 108, Japan
[5] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
基金
日本学术振兴会;
关键词
Maximal monotone operator; inverse-strongly monotone mapping; fixed point; strong convergence theorem; equilibrium problem; split feasibility problem; NONEXPANSIVE-MAPPINGS; FIXED-POINTS; APPROXIMATION; THEOREMS; ALGORITHM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, motivated by the idea of the split feasibility problem and results for solving the problem, we consider generalized split feasibility problems and then establish two Halpern type strong convergence theorems which are related to the problems. Furthermore, we prove strong convergence of an iterative scheme generated by the shrinking projection method. As applications, we get new and well-known strong convergence theorems which are connected with fixed point problem, split feasibility problem and equilibrium problem.
引用
收藏
页码:917 / 938
页数:22
相关论文
共 50 条
  • [31] An inertial extrapolation method for solving generalized split feasibility problems in real hilbert spaces
    E. C. Godwin
    C. Izuchukwu
    O. T. Mewomo
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 379 - 401
  • [32] An inertial extrapolation method for solving generalized split feasibility problems in real hilbert spaces
    Godwin, E. C.
    Izuchukwu, C.
    Mewomo, O. T.
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (02): : 379 - 401
  • [33] New General Split Feasibility Problems in Hilbert Spaces
    Sitthithakerngkiet, Kanokwan
    Donsungpri, Waraporn
    THAI JOURNAL OF MATHEMATICS, 2016, : 110 - 124
  • [34] Cyclic algorithms for split feasibility problems in Hilbert spaces
    Wang, Fenghui
    Xu, Hong-Kun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (12) : 4105 - 4111
  • [35] CQ ITERATIVE ALGORITHMS FOR FIXED POINTS OF NONEXPANSIVE MAPPINGS AND SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES
    Qin, Xiaolong
    Petrusel, Adrian
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 157 - +
  • [36] Parallel iterative methods for solving the generalized split common null point problem in Hilbert spaces
    Simeon Reich
    Truong Minh Tuyen
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [37] Parallel iterative methods for solving the generalized split common null point problem in Hilbert spaces
    Reich, Simeon
    Truong Minh Tuyen
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [38] Iterative Methods for Solving Split Feasibility Problem in Hilbert Space
    Kilicman, A.
    Mohammed, L. B.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 127 - 143
  • [39] Generalized relaxed inertial method with regularization for solving split feasibility problems in real Hilbert spaces
    Mebawondu, A. A.
    Jolaoso, L. O.
    Abass, H. A.
    Narain, O. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [40] ITERATIVE METHODS FOR THE SPLIT FEASIBILITY PROBLEM IN BANACH SPACES
    Alsulami, Saud M.
    Takahashi, Wataru
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (04) : 585 - 596