Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging

被引:41
|
作者
de Baar, Jouke [1 ]
Roberts, Stephen [1 ]
Dwight, Richard [2 ]
Mallol, Benoit [3 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Delft Univ Technol, NL-2600 AA Delft, Netherlands
[3] Numeca, Brussels, Belgium
关键词
Uncertainty quantification; Multi-fidelity; Kriging; RANS; Free-surface; OPTIMIZATION; DESIGN; MODELS; CFD;
D O I
10.1016/j.compfluid.2015.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Uncertainty quantification (UQ) for CFD-based ship design can require a large number of simulations, resulting in significant overall computational cost. Presently, we use an existing method, multi-fidelity Kriging, to reduce the number of simulations required for the UQ analysis of the performance of a sailing yacht hull, considering uncertainties in the tank blockage, mass and centre of gravity. We compare the UQ results with experimental values. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
  • [41] Multi-fidelity uncertainty quantification of film cooling flow under random operational and geometrical conditions
    Mohammadi-Ahmar, Akbar
    Raisee, Mehrdad
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 152
  • [42] A hierarchical kriging approach for multi-fidelity optimization of automotive crashworthiness problems
    Kaps, Arne
    Czech, Catharina
    Duddeck, Fabian
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (04)
  • [43] Multi-Fidelity Design Optimization under Epistemic Uncertainty
    Hou, Liqiang
    Tan, Wei
    Ma, Hong
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4452 - 4459
  • [44] Multi-fidelity Modeling via Regression-Based Hierarchical Kriging
    Yang, Sunwoong
    Kang, Yu-Eop
    Yee, Kwanjung
    [J]. PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 1, 2023, 912 : 643 - 652
  • [45] A hierarchical kriging approach for multi-fidelity optimization of automotive crashworthiness problems
    Arne Kaps
    Catharina Czech
    Fabian Duddeck
    [J]. Structural and Multidisciplinary Optimization, 2022, 65
  • [46] Multi-fidelity wake modelling based on Co-Kriging method
    Wang, Y. M.
    Rethore, P-E
    van der Laan, M. P.
    Leon, J. P. Murcia
    Liu, Y. Q.
    Li, L.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
  • [47] A Machine Learning Based Hybrid Multi-Fidelity Multi-Level Monte Carlo Method for Uncertainty Quantification
    Khan, Nagoor Kani Jabarullah
    Elsheikh, Ahmed H.
    [J]. FRONTIERS IN ENVIRONMENTAL SCIENCE, 2019, 7
  • [48] Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling
    Fenggang Wang
    Fenfen Xiong
    Shishi Chen
    Jianmei Song
    [J]. Structural and Multidisciplinary Optimization, 2019, 60 : 1583 - 1604
  • [49] Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling
    Wang, Fenggang
    Xiong, Fenfen
    Chen, Shishi
    Song, Jianmei
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (04) : 1583 - 1604
  • [50] DEEP LEARNING ENHANCED COST-AWARE MULTI-FIDELITY UNCERTAINTY QUANTIFICATION OF A COMPUTATIONAL MODEL FOR RADIOTHERAPY
    Vitullo, Piermario
    Franco, Nicola rares
    Zunino, Paolo
    [J]. FOUNDATIONS OF DATA SCIENCE, 2024,