Decomposition of degenerate Gromov-Witten invariants

被引:35
|
作者
Abramovich, Dan [1 ]
Chen, Qile [2 ]
Gross, Mark [3 ]
Siebert, Bernd [4 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[4] Univ Texas Austin, Dept Math, 2515 Speedway, Austin, TX 78712 USA
基金
英国工程与自然科学研究理事会;
关键词
logarithmic Gromov-Witten invariant; moduli stack; logarithmic stable map; degeneration; decomposition; tropical curve; tropical map; rigid tropical curve; Artin fan; STABLE LOGARITHMIC MAPS; HOLOMORPHIC-CURVES; GEOMETRY; MODULI; TROPICALIZATION; STACKS; SPACE;
D O I
10.1112/S0010437X20007393
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a decomposition formula of logarithmic Gromov-Witten invariants in a degeneration setting. A one-parameter log smooth family X -> B with singular fibre over b(0) is an element of B yields a family M(X/B, beta). B of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over b(0) in terms of rigid tropical maps to the tropicalization of X/B. This generalizes one aspect of known results in the case that the fibre Xb(0) is a normal crossings union of two divisors. We exhibit our formulas in explicit examples.
引用
收藏
页码:2020 / 2075
页数:56
相关论文
共 50 条
  • [1] LOGARITHMIC GROMOV-WITTEN INVARIANTS
    Gross, Mark
    Siebert, Bernd
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (02) : 451 - 510
  • [2] GROMOV-WITTEN INVARIANTS OF SymdPr
    Silversmith, Rob
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (09) : 6573 - 6622
  • [3] Spin Gromov-Witten Invariants
    Tyler J. Jarvis
    Takashi Kimura
    Arkady Vaintrob
    Communications in Mathematical Physics, 2005, 259 : 511 - 543
  • [4] Hamiltonian Gromov-Witten invariants
    Riera, IMI
    TOPOLOGY, 2003, 42 (03) : 525 - 553
  • [5] Spin Gromov-Witten invariants
    Jarvis, TJ
    Kimura, T
    Vaintrob, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) : 511 - 543
  • [6] Gromov-Witten invariants on Grassmannians
    Buch, AS
    Kresch, A
    Tamvakis, H
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 901 - 915
  • [7] Gromov-Witten invariants and localization
    Morrison, David R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (44)
  • [8] Relative Gromov-Witten invariants
    Ionel, EN
    Parker, TH
    ANNALS OF MATHEMATICS, 2003, 157 (01) : 45 - 96
  • [9] Local Gromov-Witten invariants are log invariants
    van Garrel, Michel
    Graber, Tom
    Ruddat, Helge
    ADVANCES IN MATHEMATICS, 2019, 350 : 860 - 876
  • [10] A PRODUCT FORMULA FOR GROMOV-WITTEN INVARIANTS
    Hyvrier, Clement
    JOURNAL OF SYMPLECTIC GEOMETRY, 2012, 10 (02) : 247 - 324