GROMOV-WITTEN INVARIANTS OF SymdPr

被引:0
|
作者
Silversmith, Rob [1 ]
机构
[1] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, Warwickshire, England
关键词
MIRROR SYMMETRY; MODULI SPACES; LOCALIZATION; COHOMOLOGY; CURVES;
D O I
10.1090/tran/8938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a graph-sum algorithm that expresses any genus-g Gromov-Witten invariant of the symmetric product orbifold Symd Pr := [(Pr)d/Sd]in terms of "Hurwitz-Hodge integrals" -integrals over (compacti-fied) Hurwitz spaces. We apply the algorithm to prove a mirror-type theorem for Symd Pr in genus zero. The theorem states that a generating function of Gromov-Witten invariants of Symd Pr is equal to an explicit power series ISymd Pr , conditional upon a conjectural combinatorial identity. This is a first step in the direction of proving Ruan's Crepant Resolution Conjecture for the resolution Hilb(d)(P2) of the coarse moduli space of Symd P2.
引用
收藏
页码:6573 / 6622
页数:50
相关论文
共 50 条
  • [1] LOGARITHMIC GROMOV-WITTEN INVARIANTS
    Gross, Mark
    Siebert, Bernd
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (02) : 451 - 510
  • [2] Spin Gromov-Witten Invariants
    Tyler J. Jarvis
    Takashi Kimura
    Arkady Vaintrob
    Communications in Mathematical Physics, 2005, 259 : 511 - 543
  • [3] Hamiltonian Gromov-Witten invariants
    Riera, IMI
    TOPOLOGY, 2003, 42 (03) : 525 - 553
  • [4] Spin Gromov-Witten invariants
    Jarvis, TJ
    Kimura, T
    Vaintrob, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) : 511 - 543
  • [5] Gromov-Witten invariants on Grassmannians
    Buch, AS
    Kresch, A
    Tamvakis, H
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 901 - 915
  • [6] Gromov-Witten invariants and localization
    Morrison, David R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (44)
  • [7] Relative Gromov-Witten invariants
    Ionel, EN
    Parker, TH
    ANNALS OF MATHEMATICS, 2003, 157 (01) : 45 - 96
  • [8] Local Gromov-Witten invariants are log invariants
    van Garrel, Michel
    Graber, Tom
    Ruddat, Helge
    ADVANCES IN MATHEMATICS, 2019, 350 : 860 - 876
  • [9] A PRODUCT FORMULA FOR GROMOV-WITTEN INVARIANTS
    Hyvrier, Clement
    JOURNAL OF SYMPLECTIC GEOMETRY, 2012, 10 (02) : 247 - 324
  • [10] Positivity of equivariant Gromov-Witten invariants
    Anderson, Dave
    Chen, Linda
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (01) : 1 - 9