GROMOV-WITTEN INVARIANTS OF SymdPr

被引:0
|
作者
Silversmith, Rob [1 ]
机构
[1] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, Warwickshire, England
关键词
MIRROR SYMMETRY; MODULI SPACES; LOCALIZATION; COHOMOLOGY; CURVES;
D O I
10.1090/tran/8938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a graph-sum algorithm that expresses any genus-g Gromov-Witten invariant of the symmetric product orbifold Symd Pr := [(Pr)d/Sd]in terms of "Hurwitz-Hodge integrals" -integrals over (compacti-fied) Hurwitz spaces. We apply the algorithm to prove a mirror-type theorem for Symd Pr in genus zero. The theorem states that a generating function of Gromov-Witten invariants of Symd Pr is equal to an explicit power series ISymd Pr , conditional upon a conjectural combinatorial identity. This is a first step in the direction of proving Ruan's Crepant Resolution Conjecture for the resolution Hilb(d)(P2) of the coarse moduli space of Symd P2.
引用
收藏
页码:6573 / 6622
页数:50
相关论文
共 50 条