Deformation of the product of complex Fano manifolds

被引:4
|
作者
Li, Qifeng [1 ]
机构
[1] Korea Inst Adv Study, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
RIGIDITY;
D O I
10.1016/j.crma.2018.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a connected family of complex Fano manifolds. We show that if some fiber is the product of two manifolds of lower dimensions, then so is every fiber. Combining with previous work of Hwang and Mok, this implies immediately that if a fiber is a (possibly reducible) Hermitian symmetric space of compact type, then all fibers are isomorphic to the same variety. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:538 / 541
页数:4
相关论文
共 50 条
  • [21] ON DOUBLY WARPED PRODUCT OF COMPLEX FINSLER MANIFOLDS
    He, Yong
    Zhong, Chunping
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1747 - 1766
  • [22] Complex product manifolds cannot be negatively curved
    Seshadri, Harish
    Zheng, Fangyang
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (01) : 145 - 149
  • [23] Generalized complex and paracomplex structures on product manifolds
    Edison Alberto Fernández-Culma
    Yamile Godoy
    Marcos Salvai
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [24] On Doubly Twisted Product of Complex Finsler Manifolds
    Xiao, Wei
    He, Yong
    Lu, Xiaoying
    Deng, Xiangxiang
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (02) : 158 - 179
  • [25] Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1
    Hwang, Jun-Muk
    ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) : 815 - 823
  • [26] COMPLEX STRUCTURES ON PRODUCT OF CIRCLE BUNDLES OVER COMPLEX MANIFOLDS
    Sankaran, Parameswaran
    Thakur, Ajay Singh
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (04) : 1331 - 1366
  • [27] Seshadri constants and Fano manifolds
    Seunghun Lee
    Mathematische Zeitschrift, 2003, 245 : 645 - 656
  • [28] On Fano manifolds of large pseudoindex
    Novelli, Carla
    JOURNAL OF ALGEBRA, 2016, 449 : 138 - 162
  • [29] On Banica sheaves and Fano manifolds
    Ballico, E
    Wisniewski, JA
    COMPOSITIO MATHEMATICA, 1996, 102 (03) : 313 - 335
  • [30] FANO MANIFOLDS AND QUADRIC BUNDLES
    WISNIEWSKI, JA
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (02) : 261 - 271