Root and critical point behaviors of certain sums of polynomials

被引:0
|
作者
Kim, Seon-Hong [1 ]
Kim, Sung Yoon [2 ]
Kim, Tae Hyung [2 ]
Lee, Sangheon [2 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul 140742, South Korea
[2] Gyeonggi Sci High Sch, Suwon 440800, South Korea
关键词
Polynomials; sums of polynomials; roots; critical points; root dragging; ZEROS;
D O I
10.1007/s12044-018-0402-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that no two roots of the polynomial equation Pi(n)(j=1)(x - r (j)) +Pi(j=1) (n) (x + r(j)) = 0, where 0 < r(1) = r(2) <= r(2) <= ... <= = r(n), can be equal and the gaps between the roots of (1) in the upper half-plane strictly increase as one proceeds upward, and for 0 < h < r(k), the roots of (x - r(k) - h) Pi (n)(j=1j not equal k) (x - r(j)) + (x + r(k) + h) Pi(n)(j=1j not equal k) (x + r(j)) = 0 and the roots of (1) in the upper half-plane lie alternatively on the imaginary axis. In this paper, we study how the roots and the critical points of (1) and (2) are located.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] On Poincaré Series of Unicritical Polynomials at the Critical Point
    Rivera-Letelier J.
    Shen W.
    Communications in Mathematics and Statistics, 2013, 1 (1) : 1 - 17
  • [22] Nonlinear Differential Polynomials Sharing Certain Value or Fixed Point
    Sahoo P.
    Saha B.
    Vietnam Journal of Mathematics, 2016, 44 (3) : 531 - 540
  • [23] On a duality formula for certain sums of values of poly-Bernoulli polynomials and its application
    Kaneko, Masanobu
    Sakurai, Fumi
    Tsumura, Hirofumi
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (01): : 203 - 218
  • [24] Factorization of Sums of Polynomials
    Seon-Hong Kim
    Acta Applicandae Mathematica, 2002, 73 : 275 - 284
  • [25] Sums of squares of polynomials
    Rudin, W
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (09): : 813 - 821
  • [26] Polynomials for Kloosterman sums
    Gurak, S.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (01): : 71 - 84
  • [27] Factorization of sums of polynomials
    Kim, SH
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (03) : 275 - 284
  • [28] On divisors of sums of polynomials
    Merai, Laszlo
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 83
  • [29] Sums of cubes of polynomials
    Car, M
    Gallardo, L
    ACTA ARITHMETICA, 2004, 112 (01) : 41 - 50
  • [30] OPTIMIZING SECURE FLOATING-POINT ARITHMETIC: SUMS, DOT PRODUCTS, AND POLYNOMIALS
    Catrina, Octavian
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (01): : 21 - 28