Predicting the Crystallization Propensity of Drug-Like Molecules

被引:12
|
作者
Hancock, Bruno C. [1 ]
机构
[1] Pfizer Inc, Groton, CT 06340 USA
关键词
crystallinity; crystallization; crystals; in silico modeling; materials science; molecular modeling; physical characterization structure-property relationship (SPR); GLASS-FORMING ABILITY; UNDERCOOLED MELTS; TENDENCY; CLASSIFICATION; STABILITY;
D O I
10.1016/j.xphs.2016.07.031
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Predicting the crystallization propensity of drug-like molecules is one of the most significant challenges facing pharmaceutical scientists today. Despite the importance of being able to understand what structural features of a molecule (polarity, molecular size, etc.) and which experimental conditions (temperature, concentration, etc.) permit a molecule to crystallize, there has been very little published work focused on this topic. This commentary provides a short overview of recent progress in this area and points to potential experimental and computational approaches that might be used in the future. (C) 2016 American Pharmacists Association r. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 30
页数:3
相关论文
共 50 条
  • [31] A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules
    Singh, SB
    Shen, LQ
    Walker, MJ
    Sheridan, RP
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (08) : 1330 - 1336
  • [32] Transformation of aminoacyl tRNAs for the in vitro selection of "drug-like" molecules
    Merryman, C
    Green, R
    [J]. CHEMISTRY & BIOLOGY, 2004, 11 (04): : 575 - 582
  • [33] How accurate are continuum solvation models for drug-like molecules?
    Jacob Kongsted
    Pär Söderhjelm
    Ulf Ryde
    [J]. Journal of Computer-Aided Molecular Design, 2009, 23 : 395 - 409
  • [34] A structure-permeability study of small drug-like molecules
    Fichert, T
    Yazdanian, M
    Proudfoot, JR
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2003, 13 (04) : 719 - 722
  • [35] Generative Network Complex for the Automated Generation of Drug-like Molecules
    Gao, Kaifu
    Duc Duy Nguyen
    Tu, Meihua
    Wei, Guo-Wei
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) : 5682 - 5698
  • [36] Automation of the Charmm General Force Field for Drug-Like Molecules
    Vanommeslaeghe, Kenno
    Ghosh, Jayeeta
    Polani, Narendra K.
    Sheetz, Michael
    Pamidighantam, Sudhakar V.
    Connolly, John W. D.
    MacKerell, Alexander D., Jr.
    [J]. BIOPHYSICAL JOURNAL, 2011, 100 (03) : 611 - 611
  • [37] Modeling quinone formation of drug-like molecules with machine learning
    Hughes, Tyler B.
    Le Dang, Na
    Swamidass, S. Joshua
    [J]. DRUG METABOLISM REVIEWS, 2016, 48 : 107 - 107
  • [38] How accurate are continuum solvation models for drug-like molecules?
    Kongsted, Jacob
    Soderhjelm, Par
    Ryde, Ulf
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2009, 23 (07) : 395 - 409
  • [39] Computer predicting metabolic profile for drug-like compounds.
    Borodina, YV
    Filimonov, DA
    Poroikov, VV
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U351 - U351
  • [40] Predicting protein targets for drug-like compounds using transcriptomics
    Pabon, Nicolas A.
    Xia, Yan
    Estabrooks, Samuel K.
    Ye, Zhaofeng
    Herbrand, Amanda K.
    Suss, Evelyn
    Biondi, Ricardo M.
    Assimon, Victoria A.
    Gestwicki, Jason E.
    Brodsky, Jeffrey L.
    Camacho, Carlos J.
    Bar-Joseph, Ziv
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)