Methodology minute: a machine learning primer for infection prevention and control

被引:0
|
作者
Wiemken, Timothy L. [1 ,2 ,3 ,4 ]
Rutschman, Ana Santos [3 ,4 ,5 ]
机构
[1] St Louis Univ, Dept Hlth & Clin Outcomes Res, Sch Med, St Louis, MO 63104 USA
[2] St Louis Univ, Dept Med, Div Infect Dis Allergy & Immunol, Sch Med, St Louis, MO 63104 USA
[3] St Louis Univ, Adv Hlth Data AHeaD Res Inst, Ctr Syst Infect Prevent, St Louis, MO 63104 USA
[4] St Louis Univ, Hlth Innovat & Legal Preparedness Partnership, St Louis, MO 63104 USA
[5] St Louis Univ, Sch Law, Ctr Hlth Law Studies, St Louis, MO 63104 USA
关键词
Artificial intelligence; Deep learning; Healthcare-associated infection; Natural language processing; Supervised learning; Statistical learning;
D O I
10.1016/j.ajic.2020.09.009
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The use of machine-learning and predictive modeling in infection prevention and control activities is increasing dramatically. In order for infection preventionists to make informed decisions on the performance of any particular model as well as to determine if the output of the model will be useful for their program needs, a suitable understanding of the creation and evaluation of these models is necessary. The purpose of this primer is to introduce the infection preventionist to the most commonly used machine-learning method in infection prevention: supervised learning. (C) 2020 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1504 / 1505
页数:2
相关论文
共 50 条
  • [21] Dissemination and implementation science for infection prevention: A primer
    Gilmartin, Heather M.
    Hessels, Amanda J.
    AMERICAN JOURNAL OF INFECTION CONTROL, 2019, 47 (06) : 688 - 692
  • [22] E-LEARNING: A RESOURCE FOR INFECTION PREVENTION AND CONTROL
    Malai, Doina
    Farley, Celine
    INTED2011: 5TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2011, : 6195 - 6202
  • [23] A primer on machine learning techniques for genomic applications
    Monaco, Alfonso
    Pantaleo, Ester
    Amoroso, Nicola
    Lacalamita, Antonio
    Lo Giudice, Claudio
    Fonzino, Adriano
    Fosso, Bruno
    Picardi, Ernesto
    Tangaro, Sabina
    Pesole, Graziano
    Bellotti, Roberto
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4345 - 4359
  • [24] Taxonomy of Machine Learning Safety: A Survey and Primer
    Mohseni, Sina
    Wang, Haotao
    Xiao, Chaowei
    Yu, Zhiding
    Wang, Zhangyang
    Yadawa, Jay
    ACM COMPUTING SURVEYS, 2023, 55 (08)
  • [25] Machine Learning Primer: Exploring Differentiable Programming
    Sakai T.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2023, 89 (09): : 695 - 699
  • [26] Machine learning: A primer for psychotherapy researchers INTRODUCTION
    Delgadillo, Jaime
    PSYCHOTHERAPY RESEARCH, 2021, 31 (01) : 1 - 4
  • [27] A primer on data visualization in infection prevention and antimicrobial stewardship
    Salinas, Jorge L.
    Kritzman, Jeffrey
    Kobayashi, Takaaki
    Edmond, Michael B.
    Ince, Dilek
    Diekema, Daniel J.
    INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2020, 41 (08): : 948 - 957
  • [28] PRIORITIZED HOME VISITS USING MACHINE LEARNING FOR PERITONEAL DIALYSIS INFECTION PREVENTION
    Sapsitthikul, Tossaporn
    Pongpirul, Krit
    Kanjanabuch, Talerngsak
    NEPHROLOGY, 2023, 28 : 82 - 82
  • [29] Machine learning and artificial intelligence in neuroscience: A primer for researchers
    Badrulhisham, Fakhirah
    Pogatzki-Zahn, Esther
    Segelcke, Daniel
    Spisak, Tamas
    Vollert, Jan
    BRAIN BEHAVIOR AND IMMUNITY, 2024, 115 : 470 - 479
  • [30] Machine Learning in Clinical Trials: A Primer with Applications to Neurology
    Matthew I. Miller
    Ludy C. Shih
    Vijaya B. Kolachalama
    Neurotherapeutics, 2023, 20 : 1066 - 1080