Methodology minute: a machine learning primer for infection prevention and control

被引:0
|
作者
Wiemken, Timothy L. [1 ,2 ,3 ,4 ]
Rutschman, Ana Santos [3 ,4 ,5 ]
机构
[1] St Louis Univ, Dept Hlth & Clin Outcomes Res, Sch Med, St Louis, MO 63104 USA
[2] St Louis Univ, Dept Med, Div Infect Dis Allergy & Immunol, Sch Med, St Louis, MO 63104 USA
[3] St Louis Univ, Adv Hlth Data AHeaD Res Inst, Ctr Syst Infect Prevent, St Louis, MO 63104 USA
[4] St Louis Univ, Hlth Innovat & Legal Preparedness Partnership, St Louis, MO 63104 USA
[5] St Louis Univ, Sch Law, Ctr Hlth Law Studies, St Louis, MO 63104 USA
关键词
Artificial intelligence; Deep learning; Healthcare-associated infection; Natural language processing; Supervised learning; Statistical learning;
D O I
10.1016/j.ajic.2020.09.009
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The use of machine-learning and predictive modeling in infection prevention and control activities is increasing dramatically. In order for infection preventionists to make informed decisions on the performance of any particular model as well as to determine if the output of the model will be useful for their program needs, a suitable understanding of the creation and evaluation of these models is necessary. The purpose of this primer is to introduce the infection preventionist to the most commonly used machine-learning method in infection prevention: supervised learning. (C) 2020 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1504 / 1505
页数:2
相关论文
共 50 条
  • [1] Methodology minute: A statistical test primer for infection prevention and control
    Wiemken, Timothy L.
    Niemotka, Samson L.
    Prener, Christopher
    AMERICAN JOURNAL OF INFECTION CONTROL, 2021, 49 (09) : 1162 - 1164
  • [2] A Primer on Machine Learning
    Edwards, Audrene S.
    Kaplan, Bruce
    Jie, Tun
    TRANSPLANTATION, 2021, 105 (04) : 699 - 703
  • [3] Machine learning: a primer
    Danilo Bzdok
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2017, 14 : 1119 - 1120
  • [4] A primer on machine learning
    Kleesiek, Jens
    Murray, Jacob M.
    Strack, Christian
    Kaissis, Georgios
    Braren, Rickmer
    RADIOLOGE, 2020, 60 (01): : 24 - 31
  • [5] Methodology minute: Utilizing the RAND/UCLA appropriateness method to develop guidelines for infection prevention
    Charles, Karina R.
    Hall, Lisa
    Ullman, Amanda J.
    Schults, Jessica A.
    AMERICAN JOURNAL OF INFECTION CONTROL, 2022, 50 (03) : 345 - 348
  • [6] Primer on Machine Learning in Electrophysiology
    Loeffler, Shane E.
    Trayanova, Natalia
    ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW, 2023, 12
  • [7] Byzantine Machine Learning: A Primer
    Guerraoui, Rachid
    Gupta, Nirupam
    Pinot, Rafael
    ACM COMPUTING SURVEYS, 2024, 56 (07)
  • [8] Methodology minute: An overview of the case-case study design and its applications in infection prevention
    Pogreba-Brown, Kristen
    Austhof, Erika
    Ellingson, Katherine
    AMERICAN JOURNAL OF INFECTION CONTROL, 2020, 48 (03) : 342 - 344
  • [9] Outpatient Infection Prevention: A Practical Primer
    Steinkuller, Fozia
    Harris, Kristofer
    Vigil, Karen J.
    Ostrosky-Zeichner, Luis
    OPEN FORUM INFECTIOUS DISEASES, 2018, 5 (05):
  • [10] Development of a Methodology for Dynamic Motor Control with Machine Learning
    Robles, David Aguilar
    Diaz, Ma. del Carmen Santiago
    Vazquez, Ana Claudia Zenteno
    Hernandez, Yeiny Romero
    Marcial, Judith Perez
    Linares, Gustavo T. Rubin
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2023, 14 (03): : 42 - 52