Transfer learning efficiently maps bone marrow cell types from mouse to human using single-cell RNA sequencing

被引:22
|
作者
Stumpf, Patrick S. [1 ,2 ]
Du, Xin [3 ]
Imanishi, Haruka [4 ]
Kunisaki, Yuya [5 ]
Semba, Yuichiro [6 ]
Noble, Timothy [1 ]
Smith, Rosanna C. G. [7 ]
Rose-Zerili, Matthew [7 ]
West, Jonathan J. [7 ,8 ]
Oreffo, Richard O. C. [1 ,8 ]
Farrahi, Katayoun [3 ]
Niranjan, Mahesan [3 ]
Akashi, Koichi [6 ]
Arai, Fumio [4 ]
MacArthur, Ben D. [1 ,8 ,9 ,10 ]
机构
[1] Univ Southampton, Fac Med, Ctr Human Dev Stem Cells & Regenerat, Southampton SO17 1BJ, Hants, England
[2] Rhein Westfal TH Aachen, Joint Res Ctr Computat Biomed, D-52074 Aachen, Germany
[3] Univ Southampton, Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[4] Kyushu Univ, Grad Sch Med Sci, Dept Stem Cell Biol & Med, Fukuoka 8128582, Japan
[5] Kyushu Univ Hosp, Ctr Cellular & Mol Med, Fukuoka 8128582, Japan
[6] Kyushu Univ, Dept Med & Biosyst Sci, Grad Sch Med Sci, Fukuoka 8128582, Japan
[7] Univ Southampton, Fac Med, Canc Sci, Southampton SO16 6YD, Hants, England
[8] Univ Southampton, Inst Life Sci, Southampton SO17 1BJ, Hants, England
[9] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[10] Alan Turing Inst, London NW1 2DB, England
基金
英国生物技术与生命科学研究理事会;
关键词
HEMATOPOIETIC STEM-CELLS; LINEAGE COMMITMENT; GENE; EXPRESSION; DIFFERENTIATION;
D O I
10.1038/s42003-020-01463-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomedical research often involves conducting experiments on model organisms in the anticipation that the biology learnt will transfer to humans. Previous comparative studies of mouse and human tissues were limited by the use of bulk-cell material. Here we show that transfer learning-the branch of machine learning that concerns passing information from one domain to another-can be used to efficiently map bone marrow biology between species, using data obtained from single-cell RNA sequencing. We first trained a multiclass logistic regression model to recognize different cell types in mouse bone marrow achieving equivalent performance to more complex artificial neural networks. Furthermore, it was able to identify individual human bone marrow cells with 83% overall accuracy. However, some human cell types were not easily identified, indicating important differences in biology. When re-training the mouse classifier using data from human, less than 10 human cells of a given type were needed to accurately learn its representation. In some cases, human cell identities could be inferred directly from the mouse classifier via zero-shot learning. These results show how simple machine learning models can be used to reconstruct complex biology from limited data, with broad implications for biomedical research.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Lessons from single-cell RNA sequencing of human islets
    Ngara, Mtakai
    Wierup, Nils
    DIABETOLOGIA, 2022, 65 (08) : 1241 - 1250
  • [22] Single-cell RNA sequencing of adult mouse testes
    Lukassen, Soeren
    Bosch, Elisabeth
    Ekici, Arif B.
    Winterpacht, Andreas
    SCIENTIFIC DATA, 2018, 5
  • [23] Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types
    He, Liqun
    Vanlandewijck, Michael
    Mae, Maarja Andaloussi
    Andrae, Johanna
    Ando, Koji
    Del Gaudio, Francesca
    Nahar, Khayrun
    Lebouvier, Thibaud
    Lavina, Barbara
    Gouveia, Leonor
    Sun, Ying
    Raschperger, Elisabeth
    Segerstolpe, Asa
    Liu, Jianping
    Gustafsson, Sonja
    Rasanen, Markus
    Zarb, Yvette
    Mochizuki, Naoki
    Keller, Annika
    Lendahl, Urban
    Betsholtz, Christer
    SCIENTIFIC DATA, 2018, 5
  • [24] Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types
    Liqun He
    Michael Vanlandewijck
    Maarja Andaloussi Mäe
    Johanna Andrae
    Koji Ando
    Francesca Del Gaudio
    Khayrun Nahar
    Thibaud Lebouvier
    Bàrbara Laviña
    Leonor Gouveia
    Ying Sun
    Elisabeth Raschperger
    Åsa Segerstolpe
    Jianping Liu
    Sonja Gustafsson
    Markus Räsänen
    Yvette Zarb
    Naoki Mochizuki
    Annika Keller
    Urban Lendahl
    Christer Betsholtz
    Scientific Data, 5
  • [25] A molecular cell atlas of the human lung from single-cell RNA sequencing
    Travaglini, Kyle J.
    Nabhan, Ahmad N.
    Penland, Lolita
    Sinha, Rahul
    Gillich, Astrid
    Sit, Rene V.
    Chang, Stephen
    Conley, Stephanie D.
    Mori, Yasuo
    Seita, Jun
    Berry, Gerald J.
    Shrager, Joseph B.
    Metzger, Ross J.
    Kuo, Christin S.
    Neff, Norma
    Weissman, Irving L.
    Quake, Stephen R.
    Krasnow, Mark A.
    NATURE, 2020, 587 (7835) : 619 - 625
  • [26] A molecular cell atlas of the human lung from single-cell RNA sequencing
    Kyle J. Travaglini
    Ahmad N. Nabhan
    Lolita Penland
    Rahul Sinha
    Astrid Gillich
    Rene V. Sit
    Stephen Chang
    Stephanie D. Conley
    Yasuo Mori
    Jun Seita
    Gerald J. Berry
    Joseph B. Shrager
    Ross J. Metzger
    Christin S. Kuo
    Norma Neff
    Irving L. Weissman
    Stephen R. Quake
    Mark A. Krasnow
    Nature, 2020, 587 : 619 - 625
  • [27] Defining the Cell Types That Drive Idiopathic Pulmonary Fibrosis Using Single-Cell RNA Sequencing
    Poczobutt, Joanna M.
    Eickelberg, Oliver
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (12) : 1454 - 1456
  • [28] Single-Cell RNA Sequencing: Unravelling the Bone One Cell at a Time
    Ryan C. Chai
    Current Osteoporosis Reports, 2022, 20 : 356 - 362
  • [29] Identification of visual cortex cell types and species differences using single-cell RNA sequencing
    Wei, Jia-Ru
    Hao, Zhao-Zhe
    Xu, Chuan
    Huang, Mengyao
    Tang, Lei
    Xu, Nana
    Liu, Ruifeng
    Shen, Yuhui
    Teichmann, Sarah A.
    Miao, Zhichao
    Liu, Sheng
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [30] Identification of visual cortex cell types and species differences using single-cell RNA sequencing
    Jia-Ru Wei
    Zhao-Zhe Hao
    Chuan Xu
    Mengyao Huang
    Lei Tang
    Nana Xu
    Ruifeng Liu
    Yuhui Shen
    Sarah A. Teichmann
    Zhichao Miao
    Sheng Liu
    Nature Communications, 13