Multi-granularity semantic representation model for relation extraction

被引:3
|
作者
Lei, Ming [1 ]
Huang, Heyan [1 ]
Feng, Chong [1 ]
机构
[1] Beijing Inst Technol, Beijing, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 12期
基金
中国国家自然科学基金;
关键词
Relation extraction; Information extraction; Natural language processing; Deep learning;
D O I
10.1007/s00521-020-05464-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In natural language, a group of words constitute a phrase and several phrases constitute a sentence. However, existing transformer-based models for sentence-level tasks abstract sentence-level semantics from word-level semantics directly, which override phrase-level semantics so that they may be not favorable for capturing more precise semantics. In order to resolve this problem, we propose a novel multi-granularity semantic representation (MGSR) model for relation extraction. This model can bridge the semantic gap between low-level semantic abstraction and high-level semantic abstraction by learning word-level, phrase-level, and sentence-level multi-granularity semantic representations successively. We segment a sentence into entity chunks and context chunks according to an entity pair. Thus, the sentence is represented as a non-empty segmentation set. The entity chunks are noun phrases, and the context chunks contain the key phrases expressing semantic relations. Then, the MGSR model utilizes inter-word, inner-chunk and inter-chunk three kinds of different self-attention mechanisms, respectively, to learn the multi-granularity semantic representations. The experiments on two standard datasets demonstrate our model outperforms the previous models.
引用
收藏
页码:6879 / 6889
页数:11
相关论文
共 50 条
  • [41] A Multi-granularity Customization Relationship Model for SaaS
    Li, Hongbo
    Shi, Yuliang
    Li, Qingzhong
    WISM: 2009 INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND MINING, PROCEEDINGS, 2009, : 611 - 615
  • [42] Clustering web documents using hierarchical representation with multi-granularity
    Huang, Faliang
    Zhang, Shichao
    He, Minghua
    Wu, Xindong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2014, 17 (01): : 105 - 126
  • [43] Multi-Granularity Ensemble Classification Algorithm Based on Attribute Representation
    Zhang Q.-H.
    Zhi X.-C.
    Wang G.-Y.
    Yang F.
    Xue F.-Z.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (08): : 1712 - 1729
  • [44] Clustering web documents using hierarchical representation with multi-granularity
    Faliang Huang
    Shichao Zhang
    Minghua He
    Xindong Wu
    World Wide Web, 2014, 17 : 105 - 126
  • [45] Joint Biomedical Entity and Relation Extraction Based on Multi-Granularity Convolutional Tokens Pairs of Labeling
    Sun, Zhaojie
    Xing, Linlin
    Zhang, Longbo
    Cai, Hongzhen
    Guo, Maozu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 4325 - 4340
  • [46] MatchACNN: A Multi-Granularity Deep Matching Model
    Guanghui Chang
    Weihan Wang
    Shiyang Hu
    Neural Processing Letters, 2023, 55 : 4419 - 4438
  • [47] A multidimensional approach to the representation of the spatio-temporal multi-granularity
    Gascuena, Concepcion M.
    Cuadra, Dolores
    Martinez, Paloma
    ICEIS 2006: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATIONAL SYSTEMS: DATABASES AND INFORMATION SYSTEMS INTEGRATION, 2006, : 175 - +
  • [48] Multi-granularity Network Representation Learning Based on Game Theory
    Shu, Hang
    Liu, Qun
    Xia, Shuyin
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 454 - 461
  • [49] Receptive Multi-Granularity Representation for Person Re-Identification
    Wang, Guanshuo
    Yuan, Yufeng
    Li, Jiwei
    Ge, Shiming
    Zhou, Xi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 6096 - 6109
  • [50] Robust Object Tracking Based on Multi-granularity Sparse Representation
    Chu, Honglin
    Wen, Jiajun
    Lai, Zhihui
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 142 - 154