Entropy-driven segregation of polymer-grafted nanoparticles under confinement

被引:35
|
作者
Zhang, Ren [1 ]
Lee, Bongjoon [2 ]
Stafford, Christopher M. [3 ]
Douglas, Jack F. [3 ]
Dobrynin, Andrey V. [1 ]
Bockstaller, Michael R. [2 ]
Karim, Alamgir [1 ]
机构
[1] Univ Akron, Coll Polymer Sci & Polymer Engn, Akron, OH 44325 USA
[2] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[3] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
polymer thin film; polymer-grafted nanoparticle; entropy confinement; topographic pattern; CAPILLARY FORCE LITHOGRAPHY; PHASE-SEPARATION; SOFT-SHEAR; NANOCOMPOSITES; FIELD; ORGANIZATION; CHAIN; FILMS; POLYSTYRENE; ORIENTATION;
D O I
10.1073/pnas.1613828114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The modification of nanoparticles with polymer ligands has emerged as a versatile approach to control the interactions and organization of nanoparticles in polymer nanocomposite materials. Besides their technological significance, polymer-grafted nanoparticle (PGNP) dis-persions have attracted interest as model systems to understand the role of entropy as a driving force for microstructure formation. For instance, densely and sparsely grafted nanoparticles show distinct dispersion and assembly behaviors within polymer matrices due to the entropy variation associated with conformational changes in brush and matrix chains. Here we demonstrate how this entropy change can be harnessed to drive PGNPs into spatially organized domain structures on submicrometer scale within topographically patterned thin films. This selective segregation of PGNPs is induced by the conformational entropy penalty arising from local perturba-tions of grafted and matrix chains under confinement. The efficiency of this particle segregation process within patterned mesa-trench films can be tuned by changing the relative entropic confinement effects on grafted and matrix chains. The versatility of topographic patterning, combined with the compatibility with a wide range of nanoparticle and polymeric materials, renders SCPINS (soft-confine-ment pattern-induced nanoparticle segregation) an attractive method for fabricating nanostructured hybrid films with potential applications in nanomaterial-based technologies.
引用
收藏
页码:2462 / 2467
页数:6
相关论文
共 50 条
  • [41] Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles
    Liu, Siqi
    Senses, Erkan
    Jiao, Yang
    Narayanan, Suresh
    Akcora, Pinar
    ACS MACRO LETTERS, 2016, 5 (05) : 569 - 573
  • [42] A Phase Diagram for Polymer-Grafted Nanoparticles in Homopolymer Matrices
    Sunday, Daniel
    Ilavsky, Jan
    Green, David L.
    MACROMOLECULES, 2012, 45 (09) : 4007 - 4011
  • [43] Preparation of cationic polymer-grafted magnetic nanoparticles and their applications
    Takafuji, Makoto
    Xu, Zhenghe
    Ihara, Hirotaka
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [44] Bimodal Polymer-grafted Nanoparticles with Precisely Controlled Structures
    Ou, Hua-lin
    Zhang, Bao-qing
    Liu, Chen-yang
    ACTA POLYMERICA SINICA, 2022, 53 (11): : 1388 - 1398
  • [45] Implicit Chain Particle Model for Polymer-Grafted Nanoparticles
    Wu, Zhenghao
    Pal, Subhadeep
    Keten, Sinan
    MACROMOLECULES, 2023, 56 (09) : 3259 - 3271
  • [46] Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles
    Prince, Elisabeth
    Narayanan, Pournima
    Chekini, Mahshid
    Pace-Tonna, Carleigh
    Roberts, Megan G.
    Zhulina, Ekaterina
    Kumacheva, Eugenia
    MACROMOLECULES, 2020, 53 (11) : 4533 - 4540
  • [47] Polymer-grafted nanoparticles in nanocomposites for tailoring dielectric properties
    Malmstrom, Eva
    Hillborg, Henrik
    Carlmark, Anna
    Sanchez, Carmen
    Wahlander, Martin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [48] Ordering Polymer-Grafted Nanoparticles at Oil-Air Interfaces under Magnetic Fields
    Liu, Siqi
    Wang, Haoyu
    Akcora, Pinar
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2018, 219 (11)
  • [49] Interfacial effects on crystallization behavior of polymer nanocomposites with polymer-grafted nanoparticles
    Wen, Xiangning
    Zhao, Weiwei
    Su, Yunlan
    Wang, Dujin
    POLYMER CRYSTALLIZATION, 2019, 2 (03)
  • [50] Macromolecular Diffusion through a Polymer Matrix with Polymer-Grafted Chained Nanoparticles
    Lin, Chia-Chun
    Ohno, Kohji
    Clarke, Nigel
    Winey, Karen I.
    Composto, Russell J.
    MACROMOLECULES, 2014, 47 (15) : 5357 - 5364