Describing faces in plane triangulations

被引:27
|
作者
Borodin, O. V. [1 ,2 ]
Ivanova, A. O. [3 ]
Kostochka, A. V. [1 ,4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Fed Univ, Yakutsk 677891, Russia
[4] Univ Illinois, Urbana, IL 61801 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Planar graph; Plane triangulation; Structure properties; 3-polytope; Lebesgue's theorem; Weight; BOUNDARY VERTICES; LIGHT SUBGRAPHS; GRAPHS; TRIANGLES; WEIGHT;
D O I
10.1016/j.disc.2013.11.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lebesgue (1940) proved that every plane triangulation contains a face with the vertex-degrees majorized by one of the following triples: (3, 6, infinity), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13), (4, 4, infinity), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7). Jendrol' (1999) improved this description, except for (4, 4, infinity) and (4, 6, 11), to (3, 4, 35), (3, 5, 21), (3, 6, 20), (3, 7, 16), (3, 8, 14), (3, 9, 14), (3, 10, 13), (4, 4, infinity), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6) and conjectured that the tight description is (3, 4, 30), (3, 5, 18), (3, 6, 20), (3, 7, 14), (3, 8, 14), (3, 9, 12), (3, 10,12), (4,4, infinity), (4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6). We prove that in fact every plane triangulation contains a face with the vertex-degrees majorized by one of the following triples, where every parameter is tight: (3, 4, 31), (3, 5, 21), (3, 6,20), (3, 7, 13), (3, 8, 14), (3, 9, 12), (3, 10, 12), (4,4, infinity), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 50 条
  • [31] Enumerating pseudo-triangulations in the plane
    Bereg, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 30 (03): : 207 - 222
  • [32] AB PERCOLATION ON PLANE TRIANGULATIONS IS UNIMODAL
    APPEL, MJB
    JOURNAL OF APPLIED PROBABILITY, 1994, 31 (01) : 193 - 204
  • [33] Grunbaum colorings of triangulations on the projective plane
    Kasai, Michiko
    Matsumoto, Naoki
    Nakamoto, Atsuhiro
    DISCRETE APPLIED MATHEMATICS, 2016, 215 : 155 - 163
  • [34] Triangulations of line segment sets in the plane
    Brevilliers, Mathieu
    Chevallier, Nicolas
    Schmitt, Dominique
    FSTTCS 2007: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2007, 4855 : 388 - 399
  • [35] EQUILIBRIUM TRIANGULATIONS OF THE COMPLEX PROJECTIVE PLANE
    BANCHOFF, TF
    KUHNEL, W
    GEOMETRIAE DEDICATA, 1992, 44 (03) : 313 - 333
  • [36] More efficient generation of plane triangulations
    Nakano, SI
    Uno, T
    GRAPH DRAWING, 2004, 2912 : 273 - 282
  • [37] Simultaneous Diagonal Flips in Plane Triangulations
    Bose, Prosenjit
    Czyzowicz, Jurek
    Gao, Zhicheng
    Morin, Pat
    Wood, David R.
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 212 - +
  • [38] Efficient generation of triconnected plane triangulations
    Nakano, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 27 (02): : 109 - 122
  • [39] On 3-coloring of plane triangulations
    Nakamoto, A
    Ota, K
    Watanabe, M
    ARS COMBINATORIA, 2005, 75 : 157 - 162
  • [40] Generating All Triangulations of Plane Graphs
    Parvez, Mohammad Tanvir
    Rahman, Md. Saidur
    Nakan, Shin-ichi
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 151 - +