Describing faces in plane triangulations

被引:27
|
作者
Borodin, O. V. [1 ,2 ]
Ivanova, A. O. [3 ]
Kostochka, A. V. [1 ,4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Fed Univ, Yakutsk 677891, Russia
[4] Univ Illinois, Urbana, IL 61801 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Planar graph; Plane triangulation; Structure properties; 3-polytope; Lebesgue's theorem; Weight; BOUNDARY VERTICES; LIGHT SUBGRAPHS; GRAPHS; TRIANGLES; WEIGHT;
D O I
10.1016/j.disc.2013.11.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lebesgue (1940) proved that every plane triangulation contains a face with the vertex-degrees majorized by one of the following triples: (3, 6, infinity), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13), (4, 4, infinity), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7). Jendrol' (1999) improved this description, except for (4, 4, infinity) and (4, 6, 11), to (3, 4, 35), (3, 5, 21), (3, 6, 20), (3, 7, 16), (3, 8, 14), (3, 9, 14), (3, 10, 13), (4, 4, infinity), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6) and conjectured that the tight description is (3, 4, 30), (3, 5, 18), (3, 6, 20), (3, 7, 14), (3, 8, 14), (3, 9, 12), (3, 10,12), (4,4, infinity), (4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6). We prove that in fact every plane triangulation contains a face with the vertex-degrees majorized by one of the following triples, where every parameter is tight: (3, 4, 31), (3, 5, 21), (3, 6,20), (3, 7, 13), (3, 8, 14), (3, 9, 12), (3, 10, 12), (4,4, infinity), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 50 条
  • [1] ALL TIGHT DESCRIPTIONS OF FACES IN PLANE TRIANGULATIONS WITH MINIMUM DEGREE 4
    Borodin, Oleg V.
    Ivanova, Anna O.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 1037 - 1050
  • [2] Another tight description of faces in plane triangulations with minimum degree 4
    Borodin, O. V.
    Ivanova, A. O.
    DISCRETE MATHEMATICS, 2022, 345 (09)
  • [3] Restricted matching in plane triangulations and near triangulations
    Aldred, R. E. L.
    Plummer, Michael D.
    Ruksasakchai, Watcharintorn
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 251 - 261
  • [4] CONNECTIVITY OF PLANE TRIANGULATIONS
    LAUMOND, JP
    INFORMATION PROCESSING LETTERS, 1990, 34 (02) : 87 - 96
  • [5] RANDOM TRIANGULATIONS OF THE PLANE
    RICHMOND, LB
    WORMALD, NC
    EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (01) : 61 - 71
  • [6] Dominating plane triangulations
    Plummer, Michael D.
    Ye, Dong
    Zha, Xiaoya
    DISCRETE APPLIED MATHEMATICS, 2016, 211 : 175 - 182
  • [7] Dominating plane triangulations
    Plummer, Michael D.
    Ye, Dong
    Zha, Xiaoya
    Discrete Applied Mathematics, 2016, 211 : 175 - 182
  • [8] DESCRIBING EDGES IN NORMAL PLANE MAPS HAVING NO ADJACENT 3-FACES
    Borodin, O. V.
    Ivanova, A. O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2024, 21 (01): : 495 - 500
  • [9] Describing 3-faces in normal plane maps with minimum degree 4
    Borodin, Oleg V.
    Ivanova, Anna O.
    DISCRETE MATHEMATICS, 2013, 313 (23) : 2841 - 2847
  • [10] Tight description of faces of triangulations on the torus
    Borodin, O. V.
    Ivanova, A. O.
    DISCRETE MATHEMATICS, 2023, 346 (09)