RGB-D object detection and semantic segmentation for autonomous manipulation in clutter

被引:120
|
作者
Schwarz, Max [1 ]
Milan, Anton [2 ]
Periyasamy, Arul Selvam [1 ]
Behnke, Sven [1 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] Univ Adelaide, Adelaide, SA, Australia
来源
基金
欧盟地平线“2020”;
关键词
Deep learning; object perception; RGB-D camera; transfer learning; object detection; semantic segmentation;
D O I
10.1177/0278364917713117
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous robotic manipulation in clutter is challenging. A large variety of objects must be perceived in complex scenes, where they are partially occluded and embedded among many distractors, often in restricted spaces. To tackle these challenges, we developed a deep-learning approach that combines object detection and semantic segmentation. The manipulation scenes are captured with RGB-D cameras, for which we developed a depth fusion method. Employing pretrained features makes learning from small annotated robotic datasets possible. We evaluate our approach on two challenging datasets: one captured for the Amazon Picking Challenge 2016, where our team NimbRo came in second in the Stowing and third in the Picking task; and one captured in disaster-response scenarios. The experiments show that object detection and semantic segmentation complement each other and can be combined to yield reliable object perception.
引用
收藏
页码:437 / 451
页数:15
相关论文
共 50 条
  • [41] Learning of perceptual grouping for object segmentation on RGB-D data
    Richtsfeld, Andreas
    Moerwald, Thomas
    Prankl, Johann
    Zillich, Michael
    Vincze, Markus
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (01) : 64 - 73
  • [42] Salient Semantic Segmentation Based on RGB-D Camera for Robot Semantic Mapping
    Hu, Lihe
    Zhang, Yi
    Wang, Yang
    Yang, Huan
    Tan, Shuyi
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [43] A Fast Pipeline for Textured Object Recognition in Clutter using an RGB-D Sensor
    Wu, Kanzhi
    Ranasinghe, Ravindra
    Dissanayake, Gamini
    [J]. 2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 1650 - 1655
  • [44] DVSOD: RGB-D Video Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Wang, Size
    Li, Wenbo
    Cheng, Li
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] Depth Quality-Inspired Feature Manipulation for Efficient RGB-D Salient Object Detection
    Zhang, Wenbo
    Ji, Ge-Peng
    Wang, Zhuo
    Fu, Keren
    Zhao, Qijun
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 731 - 740
  • [46] Multiview RGB-D Dataset for Object Instance Detection
    Georgakis, Georgios
    Reza, Md Alimoor
    Mousavian, Arsalan
    Le, Phi-Hung
    Kosecka, Jana
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 426 - 434
  • [47] Advancing in RGB-D Salient Object Detection: A Survey
    Chen, Ai
    Li, Xin
    He, Tianxiang
    Zhou, Junlin
    Chen, Duanbing
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [48] Adaptive Fusion for RGB-D Salient Object Detection
    Wang, Ningning
    Gong, Xiaojin
    [J]. IEEE ACCESS, 2019, 7 : 55277 - 55284
  • [49] Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera
    Xu, Zhefan
    Zhan, Xiaoyang
    Xiu, Yumeng
    Suzuki, Christopher
    Shimada, Kenji
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (01) : 651 - 658
  • [50] Multi-scale fusion for RGB-D indoor semantic segmentation
    Jiang, Shiyi
    Xu, Yang
    Li, Danyang
    Fan, Runze
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01):