The Corona Limit of Penrose Tilings Is a Regular Decagon

被引:3
|
作者
Akiyama, Shigeki [1 ]
Imai, Katsunobu [2 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Technol, Tsukuba, Ibaraki 3058571, Japan
关键词
CELLULAR-AUTOMATA; GAME; LIFE;
D O I
10.1007/978-3-319-39300-1_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define and study the corona limit of a tiling, by investigating the signal propagations on cellular automata (CA) on tilings employing the simple growth CA. In particular, the corona limit of Pen-rose tilings is the regular decagon.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 50 条
  • [1] Deformed Penrose tilings
    Welberry, T. R.
    Sing, B.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (18-21) : 2877 - 2886
  • [2] Deformed Penrose Tilings
    Welberry, T. R.
    Beasley, A. G.
    Sing, Bernd
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 : S45 - S45
  • [3] Stripes on Penrose tilings
    Hizume, A.
    Yamagishi, Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (01)
  • [4] Percolation on Penrose tilings
    Hof, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (02): : 166 - 177
  • [5] Homogenization of Penrose tilings
    Braides, Andrea
    Riey, Giuseppe
    Solci, Margherita
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 697 - 700
  • [6] Penrose tilings as model sets
    Shutov, A. V.
    Maleev, A. V.
    CRYSTALLOGRAPHY REPORTS, 2015, 60 (06) : 797 - 804
  • [7] Penrose Tilings as Jammed Solids
    Stenull, Olaf
    Lubensky, T. C.
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [8] Penrose tilings and quasicrystals revisited
    Steinhardt, PJ
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 215 - 226
  • [9] A noncommutative theory of penrose tilings
    Mulvey, CJ
    Resende, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (06) : 655 - 689
  • [10] The dynamical properties of Penrose tilings
    Robinson, EA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) : 4447 - 4464