Multi-Task Active Learning with Output Constraints

被引:0
|
作者
Zhang, Yi [1 ]
机构
[1] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many problems in information extraction, text mining, natural language processing and other fields exhibit the same property: multiple prediction tasks are related in the sense that their outputs (labels) satisfy certain constraints. In this paper, we propose an active learning framework exploiting such relations among tasks. Intuitively, with task outputs coupled by constraints, active learning can utilize not only the uncertainty of the prediction in a single task but also the inconsistency of predictions across tasks. We formalize this idea as a cross-task value of information criteria, in which the reward of a labeling assignment is propagated and measured over all relevant tasks reachable through constraints. A specific example of our framework leads to the cross entropy measure on the predictions of coupled tasks, which generalizes the entropy in the classical single-task uncertain sampling. We conduct experiments on two real-world problems: web information extraction and document classification. Empirical results demonstrate the effectiveness of our framework in actively collecting labeled examples for multiple related tasks.
引用
收藏
页码:667 / 672
页数:6
相关论文
共 50 条
  • [41] Multi-task learning for gland segmentation
    Rezazadeh, Iman
    Duygulu, Pinar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (01) : 1 - 9
  • [42] Multi-task learning with deformable convolution
    Li, Jie
    Huang, Lei
    Wei, Zhiqiang
    Zhang, Wenfeng
    Qin, Qibing
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 77
  • [43] Multi-task reinforcement learning in humans
    Momchil S. Tomov
    Eric Schulz
    Samuel J. Gershman
    Nature Human Behaviour, 2021, 5 : 764 - 773
  • [44] Editorial Note: Multi-Task Learning
    Zhu, Yingying
    Zhang, Shichao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29207 - 29207
  • [45] Fitting and sharing multi-task learning
    Piao, Chengkai
    Wei, Jinmao
    APPLIED INTELLIGENCE, 2024, 54 (9-10) : 6918 - 6929
  • [46] A brief review on multi-task learning
    Kim-Han Thung
    Chong-Yaw Wee
    Multimedia Tools and Applications, 2018, 77 : 29705 - 29725
  • [47] Exploring Multi-Task Learning for Explainability
    Charalampakos, Foivos
    Koutsopoulos, Iordanis
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 1, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1947 : 349 - 365
  • [48] Manifold Regularized Multi-Task Learning
    Yang, Peipei
    Zhang, Xu-Yao
    Huang, Kaizhu
    Liu, Cheng-Lin
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 528 - 536
  • [49] Kernel Online Multi-task Learning
    Sumitra, S.
    Aravindh, A.
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, ICC3 2015, 2016, 412 : 55 - 64
  • [50] Convex multi-task feature learning
    Andreas Argyriou
    Theodoros Evgeniou
    Massimiliano Pontil
    Machine Learning, 2008, 73 : 243 - 272