Spectral unmixing through Gaussian synapse ANNs in hyperspectral images

被引:0
|
作者
Crespo, JL [1 ]
Duro, RJ [1 ]
Peña, FL [1 ]
机构
[1] Univ A Coruna, Grp Sistemas Autonomos, La Coruna, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The work presented here is concerned with the application of Gaussian Synapse based Artificial Neural Networks to the spectral unmixing process when analyzing hyperspectral images. This type of networks and their training algorithm will be shown to be very efficient in the determination of the abundances of the different endmembers present in the image using a very small training set that can be obtained without any knowledge on the proportions of endmembers present. The Networks are tested using a benchmark set of artificially generated hyperspectral images containing five endmembers with spatially diverse abundances and finally verified on a real image.
引用
收藏
页码:661 / 668
页数:8
相关论文
共 50 条
  • [1] Unmixing low ratio endmembers through Gaussian synapse ANNs in hyperspectral images
    Crespo, JL
    Duro, R
    Peña, FL
    2004 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2004, : 150 - 154
  • [2] Unmixing Low-Ratio Endmembers in Hyperspectral Images Through Gaussian Synapse ANNs
    Lopez Pena, Fernando
    Luis Crespo, Juan
    Duro, Richard J.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (07) : 1834 - 1840
  • [3] Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes
    Altmann, Yoann
    Dobigeon, Nicolas
    McLaughlin, Steve
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) : 2442 - 2453
  • [4] Noise Reduction in Hyperspectral Images Through Spectral Unmixing
    Cerra, Daniele
    Mueller, Rupert
    Reinartz, Peter
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 109 - 113
  • [5] Gaussian synapse ANNs in multi- and hyperspectral image data analysis
    Crespo, JL
    Duro, RJ
    Peña, FL
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2003, 52 (03) : 724 - 732
  • [6] On the use of Gaussian synapse ANNs in multi and hyperspectral image data analysis
    Crespo, JL
    Duro, RJ
    Peña, FL
    VIMS 2002: IEEE INTERNATIONAL SYMPOSIUM ON VIRTUAL AND INTELLIGENT MEASUREMENT SYSTEMS: DISTRIBUTED INTELLIGENT SENSING FOR ADVANCED INTEGRATED VIRTUAL ENVIRONMENTS, 2002, : 84 - 88
  • [7] Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images
    Henrot, Simon
    Chanussot, Jocelyn
    Jutten, Christian
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3219 - 3232
  • [8] VARIATIONAL METHODS FOR SPECTRAL UNMIXING OF HYPERSPECTRAL IMAGES
    Eches, Olivier
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Snoussi, Hichem
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 957 - 960
  • [9] MULTILINEAR SPECTRAL UNMIXING OF HYPERSPECTRAL MULTIANGLE IMAGES
    Veganzones, M. A.
    Cohen, J.
    Farias, R. Cabral
    Marrero, R.
    Chanussot, J.
    Comon, P.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 744 - 748
  • [10] ANOMALY DETECTION IN HYPERSPECTRAL IMAGES THROUGH SPECTRAL UNMIXING AND LOW RANK DECOMPOSITION
    Qu, Ying
    Guo, Rui
    Wang, Wei
    Qi, Hairong
    Ayhan, Bulent
    Kwan, Chiman
    Vance, Steven
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1855 - 1858