Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease

被引:74
|
作者
Xie, Long [1 ,2 ]
Wisse, Laura E. M. [1 ,2 ,3 ]
Pluta, John [1 ,2 ]
de Flores, Robin [3 ,4 ]
Piskin, Virgine [1 ]
Manjon, Jose, V [5 ]
Wang, Hongzhi [6 ]
Das, Sandhitsu R. [1 ,3 ,4 ]
Ding, Song-Lin [7 ,8 ]
Wolk, David A. [3 ,4 ]
Yushkevich, Paul A. [1 ,2 ]
机构
[1] Univ Penn, PICSL, Dept Radiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Penn Memory Ctr, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Neurol, Philadelphia, PA 19104 USA
[5] Univ Politecn Valencia, Inst Aplicac Tecnol Informac & Comunica Avanzadas, Valencia, Spain
[6] IBM Almaden Res Ctr, San Jose, CA USA
[7] Allen Inst Brain Sci, Seattle, WA USA
[8] Guangzhou Med Univ, Inst Neurosci, Sch Basic Med Sci, Guangzhou, Guangdong, Peoples R China
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Alzheimer's disease; anterior and posterior hippocampus; biomarker; dura mater; entorhinal cortex; mild cognitive impairment; perirhinal cortex; segmentation; T1-weighted magnetic resonance imaging; transentorhinal cortex; MILD COGNITIVE IMPAIRMENT; HIGH-RESOLUTION MRI; HUMAN PERIRHINAL CORTEX; ADNI HARMONIZED PROTOCOL; HIPPOCAMPAL SUBFIELDS; ENTORHINAL CORTEX; PARAHIPPOCAMPAL SUBREGIONS; ATROPHY; BRAIN; MEMORY;
D O I
10.1002/hbm.24607
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Medial temporal lobe (MTL) substructures are the earliest regions affected by neurofibrillary tangle pathology-and thus are promising biomarkers for Alzheimer's disease (AD). However, automatic segmentation of the MTL using only T1-weighted (T1w) magnetic resonance imaging (MRI) is challenging due to the large anatomical variability of the MTL cortex and the confound of the dura mater, which is commonly segmented as gray matter by state-of-the-art algorithms because they have similar intensity in T1w MRI. To address these challenges, we developed a novel atlas set, consisting of 15 cognitively normal older adults and 14 patients with mild cognitive impairment with a label explicitly assigned to the dura, that can be used by the multiatlas automated pipeline (Automatic Segmentation of Hippocampal Subfields [ASHS-T1]) for the segmentation of MTL subregions, including anterior/posterior hippocampus, entorhinal cortex (ERC), Brodmann areas (BA) 35 and 36, and parahippocampal cortex on T1w MRI. Cross-validation experiments indicated good segmentation accuracy of ASHS-T1 and that the dura can be reliably separated from the cortex (6.5% mislabeled as gray matter). Conversely, FreeSurfer segmented majority of the dura mater (62.4%) as gray matter and the degree of dura mislabeling decreased with increasing disease severity. To evaluate its clinical utility, we applied the pipeline to T1w images of 663 ADNI subjects and significant volume/thickness loss is observed in BA35, ERC, and posterior hippocampus in early prodromal AD and all subregions at later stages. As such, the publicly available new atlas and ASHS-T1 could have important utility in the early diagnosis and monitoring of AD and enhancing brain-behavior studies of these regions.
引用
收藏
页码:3431 / 3451
页数:21
相关论文
共 50 条
  • [21] Medial temporal lobe subregional morphometry using high resolution MRI in Alzheimer's disease
    Wolk, David A.
    Das, Sandhitsu R.
    Mueller, Susanne G.
    Weiner, Michael W.
    Yushkevich, Paul A.
    NEUROBIOLOGY OF AGING, 2017, 49 : 204 - 213
  • [22] Structural Ultrasound of the Medial Temporal Lobe in Alzheimer's Disease
    Yilmaz, Rezzak
    Pilotto, Andrea
    Roeben, Benjamin
    Preische, Oliver
    Suenkel, Ulrike
    Heinzel, Sebastian
    Metzger, Florian G.
    Laske, Christoph
    Maetzler, Walter
    Berg, Daniela
    ULTRASCHALL IN DER MEDIZIN, 2017, 38 (03): : 294 - 300
  • [23] Automated algorithm to measure changes in medial temporal lobe volume in Alzheimer disease
    Kazemifar, Samaneh
    Drozd, John J.
    Rajakumar, Nagalingam
    Borrie, Michael J.
    Bartha, Robert
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 227 : 35 - 46
  • [24] Regions-of-interest based automated diagnosis of Parkinson's disease using T1-weighted MRI
    Rana, Bharti
    Juneja, Akanksha
    Saxena, Mohit
    Gudwani, Sunita
    Kumaran, S. Senthil
    Agrawal, R. K.
    Behari, Madhuri
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (09) : 4506 - 4516
  • [25] Segmentation of cervical Lymph Nodes in T1-weighted MRI Images
    Jung, Florian
    Hilpert, Julia
    Wesarg, Stefan
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 353 - 358
  • [26] Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7T MRI study
    Shah, Preya
    Bassett, Danielle S.
    Wisse, Laura E. M.
    Detre, John A.
    Stein, Joel M.
    Yushkevich, Paul A.
    Shinohara, Russell T.
    Elliott, Mark A.
    Das, Sandhitsu R.
    Davis, Kathryn A.
    HUMAN BRAIN MAPPING, 2019, 40 (08) : 2390 - 2398
  • [27] 7T MRI allows detection of disturbed cortical lamination of the medial temporal lobe in patients with Alzheimer's disease
    Kenkhuis, Boyd
    Jonkman, Laura E.
    Bulk, Marjolein
    Buijs, Mathijs
    Boon, Baayla D. C.
    Bouwman, Femke H.
    Geurts, Jeroen J. G.
    van de Berg, Wilma D. J.
    van der Weerd, Louise
    NEUROIMAGE-CLINICAL, 2019, 21
  • [28] Manual Planimetry of the Medial Temporal Lobe Versus Automated Volumetry of the Hippocampus in the Diagnosis of Alzheimer's Disease
    Gonzalez, Manuel Menendez
    Suarez-Sanmartin, Esther
    Garcia, Ciara
    Martinez-Camblor, Pablo
    Westman, Eric
    Simmons, Andy
    CUREUS, 2016, 8 (03):
  • [29] Familial Alzheimer's disease: How early does medial temporal lobe atrophy occur?
    Schott, JM
    Fox, NC
    Frost, C
    Scahill, RI
    Chan, D
    Janssen, JC
    Jenkins, R
    Rossor, MN
    NEUROBIOLOGY OF AGING, 2004, 25 (02) : 255 - 256
  • [30] Familial Alzheimer's disease: How early does medial temporal lobe atrophy occur
    Schott, J
    Fox, N
    Frost, C
    Scahill, R
    Chan, D
    Janssen, J
    Jenkins, R
    Rossor, M
    NEUROBIOLOGY OF AGING, 2002, 23 (01) : S354 - S354