Minimal resolution of Atkin-Lehner quotients of X0(N)

被引:2
|
作者
Xue, Hui [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
POINTS; CURVES;
D O I
10.1016/j.jnt.2009.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-0(N) be the classic modular curve of level N over Z. Let W-M be the Atkin-Lehner involution of X-0(N) associated to a divisor M with (M, N/M) = 1. In this paper an explicit description is given for the minimal resolution over Z[1/6] of the Atkin-Lehner quotient X-0(N)/W-M. As an application a new proof of Deuring's formula on the number of supersingular j-invariants in F-p is given. In certain cases it is also shown that the action of Hecke operators on the component group of the Jacobian of the Atkin-Lehner quotient is Eisenstein. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2072 / 2092
页数:21
相关论文
共 50 条
  • [21] Points on quadratic twists of X0(N)
    Ozman, Ekin
    ACTA ARITHMETICA, 2012, 152 (04) : 323 - 348
  • [22] Trigonal modular curves X0*(N)
    Hasegawa, Y
    Shimura, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (06) : 83 - 86
  • [23] Intersection matrices for the minimal regular model of X0(N) and applications to the Arakelov canonical sheaf
    Dolce, Paolo
    Mercuri, Pietro
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):
  • [24] A CONVERSE THEOREM FOR BORCHERDS PRODUCTS ON X0(N)
    Bruinier, Jan Hendrik
    Schwagenscheidt, Markus
    NAGOYA MATHEMATICAL JOURNAL, 2020, 240 : 237 - 256
  • [25] 关于■f(x_n)=f(x0)时,有■x_n=x0的充分条件及应用
    谢民育
    吉首大学学报(自然科学版), 1983, (00) : 17 - 19
  • [26] ON HIGHER ORDER WEIERSTRASS POINTS ON X0(N)
    Mikoc, Damir
    Muic, Goran
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2024, 28 (558): : 57 - 70
  • [27] BIELLIPTIC QUOTIENT MODULAR CURVES OF X0(N)
    Bars, Francesc
    Kamel, Mohamed
    Schweizer, Andreas
    MATHEMATICS OF COMPUTATION, 2023, 92 (340) : 895 - 929
  • [28] Modular equations of hyperelliptic X0(N) and an application
    Hibino, T
    Murabayashi, N
    ACTA ARITHMETICA, 1997, 82 (03) : 279 - 291
  • [29] DEFINING EQUATIONS OF X0(22n)
    Tu, Fang-Ting
    Yang, Yifan
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (01) : 105 - 113
  • [30] Linear independence of Hecke operators in the homology of X0(N)
    Vanderkam, JM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 349 - 358