Galois theory of quadratic rational functions

被引:22
|
作者
Jones, Rafe [1 ]
Manes, Michelle [2 ]
机构
[1] Carleton Coll, Dept Math, Northfield, MN 55057 USA
[2] Univ Hawaii, Dept Math, Honolulu, HI 96813 USA
基金
美国国家科学基金会;
关键词
Galois representations; arboreal Galois representations; quadratic rational maps; arithmetic dynamics; iteration of rational functions; ramification in iterated towers;
D O I
10.4171/CMH/316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a number field K with absolute Galois group G(K), we consider the action of G(K) on the infinite tree of preimages of alpha is an element of K under a degree-two rational function phi is an element of K(x), with particular attention to the case when phi commutes with a non-trivial Mobius transformation. In a sense this is a dynamical systems analogue to the l-adic Galois representation attached to an elliptic curve, with particular attention to the CM case. Using a result about the discriminants of numerators of iterates of phi, we give a criterion for the image of the action to be as large as possible. This criterion is in terms of the arithmetic of the forward orbits of the two critical points of phi. In the case where phi commutes with a non-trivial Mobius transformation, there is in effect only one critical orbit, and we give a modified version of our maximality criterion. We prove a Serre-type finite-index result in many cases of this latter setting.
引用
收藏
页码:173 / 213
页数:41
相关论文
共 50 条
  • [31] PERIODIC REPRESENTATIONS AND RATIONAL APPROXIMATIONS FOR QUADRATIC IRRATIONALITIES BY MEANS OF REDEI RATIONAL FUNCTIONS
    Murru, Nadir
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 33 (02): : 141 - 154
  • [33] A THEORY OF RESIDUES FOR SKEW RATIONAL FUNCTIONS
    Caruso, Xavier
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 1159 - 1192
  • [34] RATIONAL PERIOD FUNCTIONS FOR THE MODULAR GROUP AND REAL QUADRATIC FIELDS
    CHOIE, YJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1989, 33 (03) : 495 - 530
  • [35] Permutation rational functions over quadratic extensions of finite fields
    Chen, Ruikai
    Mesnager, Sihem
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 95
  • [36] QUADRATIC RESIDUES IN GALOIS FIELD
    GIUDICI, RE
    SEGRE, B
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 52 (04): : 461 - 466
  • [37] Rational curve with Galois point and extendable Galois automorphism
    Yoshihara, Hisao
    JOURNAL OF ALGEBRA, 2009, 321 (05) : 1463 - 1472
  • [38] GALOIS VERSION OF GALOIS THEORY
    EDWARDS, HM
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (10): : C113 - C113
  • [39] Rational pullbacks of Galois covers
    Pierre Dèbes
    Joachim König
    François Legrand
    Danny Neftin
    Mathematische Zeitschrift, 2021, 299 : 1507 - 1531
  • [40] Rational pullbacks of Galois covers
    Debes, Pierre
    Konig, Joachim
    Legrand, Francois
    Neftin, Danny
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 1507 - 1531