Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors

被引:47
|
作者
Zhang, Yanjun [1 ]
Li, Tie [1 ]
Na, Guangyu [1 ]
Li, Guoqing [2 ]
Li, Yang [2 ]
机构
[1] State Grid Liaoning Elect Power Supply Co Ltd, Shenyang 110006, Peoples R China
[2] Northeast Dianli Univ, Sch Elect Engn, Chuanying 132012, Jilin, Peoples R China
关键词
DYNAMIC SECURITY ASSESSMENT; FEATURE-SELECTION;
D O I
10.1155/2015/529724
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new optimized extreme learning machine- (ELM-) based method for power system transient stability prediction (TSP) using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO) algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Transient Stability Assessment in Power System using Critical Machine Identification
    Yurika
    Suwarno
    Sianipar, Gibson H. M.
    Naiborhu, Janson
    PROCEEDING OF 2019 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS (ICEEI), 2019, : 586 - 589
  • [22] An Optimized Extreme Learning Machine Algorithm for Improving Software Maintainability Prediction
    Gupta, Shkha
    Chug, Anuradha
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 829 - 836
  • [23] An Automated and Interpretable Machine Learning Scheme for Power System Transient Stability Assessment
    Liu, Fang
    Wang, Xiaodi
    Li, Ting
    Huang, Mingzeng
    Hu, Tao
    Wen, Yunfeng
    Su, Yunche
    ENERGIES, 2023, 16 (04)
  • [24] Financial Time Series Prediction Using Pelican Optimized Extreme Learning Machine with Reduced Weights
    Rao, Peketi Syamala
    Varma, Gottumukkala Parthasaradhi
    Chinta, Durga Prasad
    Gottapu, Kusuma
    Lakshmi, T. V. Hyma
    Naidu, Karanam Appala
    Saritha, Market
    COMPUTATIONAL ECONOMICS, 2025,
  • [25] Intrusion detection system using an optimized kernel extreme learning machine and efficient features
    Ghasemi, Jamal
    Esmaily, Jamal
    Moradinezhad, Reza
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2019, 45 (01):
  • [26] Intrusion detection system using an optimized kernel extreme learning machine and efficient features
    Jamal Ghasemi
    Jamal Esmaily
    Reza Moradinezhad
    Sādhanā, 2020, 45
  • [27] Prediction and Enhancement of Power System Transient Stability Using Taylor Series
    Sahami, Amirreza
    Kamalasadan, Sukumar
    2018 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2018,
  • [28] An extreme learning machine approach for slope stability evaluation and prediction
    Zaobao Liu
    Jianfu Shao
    Weiya Xu
    Hongjie Chen
    Yu Zhang
    Natural Hazards, 2014, 73 : 787 - 804
  • [29] Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine
    Kari, Tusongjiang
    He, Zhiyang
    Rouzi, Aisikaer
    Zhang, Ziwei
    Ma, Xiaojing
    Du, Lin
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01): : 691 - 705
  • [30] An extreme learning machine approach for slope stability evaluation and prediction
    Liu, Zaobao
    Shao, Jianfu
    Xu, Weiya
    Chen, Hongjie
    Zhang, Yu
    NATURAL HAZARDS, 2014, 73 (02) : 787 - 804