Generation of reactive oxygen species by hydroxypyridone compound/iron complexes

被引:7
|
作者
Murakami, Keiko [1 ,2 ]
Yoshino, Masataka [1 ,2 ]
机构
[1] Aichi Med Univ, Dept Biochem, Sch Med, Nagakute, Aichi, Japan
[2] Ichinomiya Kenshin Coll Nursing, Jogan Tori 5-4-1, Ichinomiya, Aichi 4910063, Japan
关键词
Hydroxypyridone; mimosine‌ deferiprone; iron; reactive oxygen species; DNA damage; hydrogen peroxide‌ superoxide;
D O I
10.1080/13510002.2020.1787662
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Objectives: Prooxidant properties of iron-binding hydroxypyridone compounds including deferiprone and mimosine were analyzed. Methods: Hydroxypyridone/iron-dependent production of reactive oxygen species was evidenced by the inactivation of aconitase, the most sensitive enzyme to oxidative stress in permeabilized yeast cells. Results and Discussion: Deferiprone and mimosine produced reactive oxygen species in the presence of ferrous sulfate. The inactivation required sodium azide the inhibitor of catalase, and addition of TEMPOL, a scavenger of superoxide radical, protected aconitase from the inactivation, suggesting that the superoxide radical produced from the hydroxypyridone/iron complex is responsible for the inactivation of aconitase. A principal role of superoxide radical was further supported by the finding that the hydroxypyridone/iron complex can inactivate aconitase in the presence of cyanide the inhibitor of superoxide dismutase. Deferiprone and mimosine stimulated the Fe2+ oxidation, resulting in the one-electron reduction of oxygen to form superoxide anion, which can inactivate aconitase by oxidizing the prosthetic iron-sulfur cluster. Mimosine further stimulated the ascorbate/iron-dependent formation of 8-hydroxy-2 '-deoxyguanosine in DNA. Conclusion: Biological toxicity of mimosine and deferiprone reported previously can be accounted for by the prooxidant properties of hydroxypyridone compounds: coordination complex with iron generates reactive oxygen species resulting in the disturbance of mitochondrial energy metabolism and DNA damage.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 50 条
  • [21] Cardiac Mitochondria and Reactive Oxygen Species Generation
    Chen, Yeong-Renn
    Zweier, Jay L.
    CIRCULATION RESEARCH, 2014, 114 (03) : 524 - 537
  • [22] Generation of reactive oxygen species by equine spermatozoa
    Ball, BA
    Vo, AT
    Baumber, J
    AMERICAN JOURNAL OF VETERINARY RESEARCH, 2001, 62 (04) : 508 - 515
  • [23] THE EFFECT OF TRANILAST OF THE GENERATION OF REACTIVE OXYGEN SPECIES
    MIYACHI, Y
    IMAMURA, S
    NIWA, Y
    JOURNAL OF PHARMACOBIO-DYNAMICS, 1987, 10 (06): : 255 - 259
  • [24] Generation and Detection of Reactive Oxygen Species in Photocatalysis
    Nosaka, Yoshio
    Nosaka, Atsuko Y.
    CHEMICAL REVIEWS, 2017, 117 (17) : 11302 - 11336
  • [25] Generation of reactive oxygen species in blood platelets
    Wachowicz, B
    Olas, B
    Zbikowska, HM
    Buczynski, A
    PLATELETS, 2002, 13 (03) : 175 - 182
  • [26] Balancing the generation and elimination of reactive oxygen species
    Rodriguez, R
    Redman, R
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (09) : 3175 - 3176
  • [27] Reactive oxygen species generation in women with osteoporosis
    Stetkiewicz, Tomasz
    Makowski, Marcin
    Stachowiak, Grzegorz
    Polac, Ireneusz
    Surkont, Grzegorz
    Pertynski, Tomasz
    MENOPAUSE REVIEW-PRZEGLAD MENOPAUZALNY, 2007, 6 (04): : 239 - 243
  • [28] Reactive oxygen species generation and signaling in plants
    Tripathy, Baishnab Charan
    Oelmueller, Ralf
    PLANT SIGNALING & BEHAVIOR, 2012, 7 (12) : 1621 - 1633
  • [29] Intracellular generation of reactive oxygen species by mitochondria
    Nohl, H
    Gille, L
    Staniek, K
    BIOCHEMICAL PHARMACOLOGY, 2005, 69 (05) : 719 - 723
  • [30] Generation of reactive oxygen species by sulfonamide reactive intermediates.
    Rieder, MJ
    Chau, K
    Tucker, MJ
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2006, 79 (02) : P70 - P70