Phonon spectrum and electron-phonon coupling in zigzag graphene nanoribbons

被引:6
|
作者
Zhang, Ting [1 ,2 ,3 ]
Heid, Rolf [2 ]
Bohnen, Klaus-Peter [2 ]
Sheng, Ping [1 ,3 ]
Chan, C. T. [1 ,3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[2] KIT, Inst Festkorperphys, D-76021 Karlsruhe, Germany
[3] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 20期
关键词
LINEAR-RESPONSE; RIBBONS; EDGE; SHEETS; STATES; CARBON;
D O I
10.1103/PhysRevB.89.205404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we report a first-principles study of the lattice dynamics of small graphene nanoribbon with zigzag edges. Our investigation is based on spin polarized density functional calculations (DFT). Nesting properties in the electronic band structure are very different for nanoribbons with unpolarized, ferromagnetic, and antiferromagnetic configurations. As a result, the phonon spectrum and nesting related softening in phonon frequencies differ in these cases. The unpolarized and ferromagnetic structures show nesting related phonon softening and considerable electron phonon linewidth, while for the antiferromagnetic structure, a band gap at the Fermi energy eliminates these effects. Saturating the nanoribbon edge with hydrogen has negligible effect on the phonon spectra for the magnetic structures while for the unpolarized configuration all structures without hydrogen are unstable due to soft phonon modes. The electron-phonon coupling coefficients have also been calculated and implications for Peierls transition and superconductivity are discussed.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Electron-phonon coupling in the ordered phase of Rb on monolayer graphene
    Shin, Woo Jong
    Jung, Sung Won
    Sohn, Yeongsup
    Ryu, Sae Hee
    Huh, Minjae
    Kim, Keun Su
    CURRENT APPLIED PHYSICS, 2020, 20 (04) : 484 - 488
  • [42] Electron-phonon coupling in quasi-free-standing graphene
    Johannsen, Jens Christian
    Ulstrup, Soren
    Bianchi, Marco
    Hatch, Richard
    Guan, Dandan
    Mazzola, Federico
    Hornekaer, Liv
    Fromm, Felix
    Raidel, Christian
    Seyller, Thomas
    Hofmann, Philip
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (09)
  • [43] Anisotropic Eliashberg function and electron-phonon coupling in doped graphene
    Haberer, D.
    Petaccia, L.
    Fedorov, A. V.
    Praveen, C. S.
    Fabris, S.
    Piccinin, S.
    Vilkov, O.
    Vyalikh, D. V.
    Preobrajenski, A.
    Verbitskiy, N. I.
    Shiozawa, H.
    Fink, J.
    Knupfer, M.
    Buechner, B.
    Grueneis, A.
    PHYSICAL REVIEW B, 2013, 88 (08)
  • [44] EFFECT OF PLANE TWINNING ON THE ELECTRON-PHONON COUPLING SPECTRUM IN TIN
    KHOTKEVICH, AV
    YANSON, IK
    LAZAREVA, MB
    SOKOLENKO, VI
    STARODUBOV, YD
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 98 (05): : 1672 - 1679
  • [45] Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons
    Zhou, Guoqing
    Cen, Chao
    Wang, Shuyi
    Deng, Mingsen
    Prezhdo, Oleg V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (22): : 7179 - 7187
  • [46] Full-band and atomistic study of electron-phonon interaction in graphene nanoribbons
    Kitayama, Tatsuro
    Minari, Hideki
    Mori, Nobuya
    16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
  • [47] Approximate effective phonon spectrum with calculation of electron-phonon coupling constant in MgB2
    沈龙海
    金华
    王丹
    延边大学学报(自然科学版), 2003, (02) : 103 - 106
  • [48] Observation of phonon peaks and electron-phonon bound states in graphene
    Zhang, Yu
    Yang, Qian
    Ren, Ya-Ning
    He, Lin
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [49] Nonlocal screening, electron-phonon coupling, and phonon renormalization in metals
    Zhang, PH
    Louie, SG
    Cohen, ML
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [50] NON EQUILIBRIUM PHONON DISTRIBUTION AND ELECTRON-PHONON COUPLING IN SEMICONDUCTORS
    MATTOS, JCV
    LEITE, RCC
    SOLID STATE COMMUNICATIONS, 1973, 12 (06) : 465 - 468