Study of coal gas wettability for CO2 storage and CH4 recovery

被引:42
|
作者
Saghafi, A. [1 ]
Javanmard, H. [1 ]
Pinetown, K. [2 ]
机构
[1] CSIRO Energy Technol, N Ryde, NSW 1670, Australia
[2] CSIRO Earth Sci & Resource Engn, N Ryde, NSW, Australia
关键词
CO2; sequestration; coal seam gas; contact angle; gas reservoir; wettability; RECEDING CONTACT ANGLES; DROP SIZE DEPENDENCE; CARBON-DIOXIDE; INTERFACIAL-TENSION; SYDNEY BASIN; STICK-SLIP; SEQUESTRATION; WATER; PRESSURE; SURFACES;
D O I
10.1111/gfl.12078
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To quantify and rank gas wettability of coal as a key parameter affecting the extent of CO2 sequestration in coal and CH4 recovery from coal, we developed a contact angle measuring system based on a captive gas bubble technique. We used this system to study the gas wetting properties of an Australian coal from the Sydney Basin. Gas bubbles were generated and captivated beneath a coal sample within a distilled water-filled (pH 5.7) pressurised cell. Because of the use of distilled water, and the continuous dissolution and shrinkage of the gas bubble in water during measurement, the contact angles measured correspond to a 'transient receding' contact angle. To take into account the mixed-gas nature (CO2, CH4, and to a lesser extent N-2) of coal seam gas in the basin, we evaluated the relative wettability of coal by CH4, CO2 and N-2 gases in the presence of water. Measurements were taken at various pressures of up to 15 MPa for CH4 and N-2, and up to 6 MPa for CO2 at a constant temperature of 22 degrees C. Overall, our results show that CO2 wets coal more extensively than CH4, which in turn wets coal slightly more than N-2. Moreover, the contact angle reduces as the pressure increases, and becomes < 90 degrees at various pressures depending on the gas type. In other words, all three gases wet coal better than water under sufficiently high pressure.
引用
收藏
页码:310 / 325
页数:16
相关论文
共 50 条
  • [1] Experimental Study on Replacing Coal Seam CH4 with CO2 Gas
    Wen, Hu
    Hao, Jianchi
    Ma, Li
    Zheng, Xuezhao
    ACS OMEGA, 2022, 7 (01): : 1395 - 1403
  • [2] Pressure oscillation controlled CH4/CO2 replacement in methane hydrates: CH4 recovery, CO2 storage, and their characteristics
    Sun, Lingjie
    Wang, Tian
    Dong, Bo
    Li, Man
    Yang, Lei
    Dong, Hongsheng
    Zhang, Lunxiang
    Zhao, Jiafei
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2021, 425 (425)
  • [3] Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate
    Zhang, Lunxiang
    Yang, Lei
    Wang, Jiaqi
    Zhao, Jiafei
    Dong, Hongsheng
    Yang, Mingjun
    Liu, Yu
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2017, 308 : 40 - 49
  • [4] The influence of irreducible water for enhancing CH4 recovery in combination of CO2 storage with CO2 injection in gas reservoirs
    He, Chang
    Ji, Zemin
    Geng, Xiaoyan
    Zhou, Mengfei
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 126
  • [5] Investigation of gas displacement efficiency and storage capability for enhanced CH4 recovery and CO2 sequestration
    Li, Xiangchen
    Kang, Yili
    Zhou, Laicheng
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 169 : 485 - 493
  • [6] Influence of tectonic fractures on CO2 storage and enhanced CH4 recovery
    Wang Z.
    Sang S.
    Zhou X.
    Liu X.
    Zhang S.
    Meitan Xuebao/Journal of the China Coal Society, 2023, 48 (08): : 3151 - 3161
  • [7] coo Comparison of CO2 and CH4 Recovery from a Storage Site
    Yip, Yeung H.
    Jeong, Hoonyoung
    Fu, Shipeng
    van Nierop, Ernst A.
    GHGT-11, 2013, 37 : 4843 - 4852
  • [8] Effect of Gas Exchange Interval on CH4 Recovery Efficiency and Study of Mechanism of CH4 Hydrate Replacement by CO2 Mixture
    Ding, Ya-Long
    Wang, Hua-Qin
    Lv, Tao
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [9] Molecular dynamics of CH4/CO2 on calcite for enhancing gas recovery
    Carchini, Giuliano
    Al-Marri, Mohammed J.
    Hussein, Ibnelwaleed
    Shawabkeh, Reyad
    Mahmoud, Mohamed
    Aparicio, Santiago
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (11): : 3184 - 3195
  • [10] Experimental Study of Desorption and Seepage Characteristics of Single Gas and CO2–CH4 Gas Mixture in Coal
    Beichen Yu
    Dongming Zhang
    Bin Xu
    Weijing Xiao
    Chongyang Wang
    Weihang Du
    Natural Resources Research, 2022, 31 : 2715 - 2730