Twistor spaces of generalized complex structures

被引:5
|
作者
Davidov, Johann [1 ]
Mushkarov, Oleg [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
关键词
generalized complex structures; twistor spaces;
D O I
10.1016/j.geomphys.2005.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The twistor construction is applied for obtaining examples of generalized complex structures (in the sense of Hitchin) that are not induced by a complex or a symplectic structure. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1623 / 1636
页数:14
相关论文
共 50 条
  • [41] TWISTOR SPACES FOR HYPERKAHLER IMPLOSIONS
    Dancer, Andrew
    Kirwan, Frances
    Swann, Andrew
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 97 (01) : 37 - 77
  • [42] Twistor spaces for QKT manifolds
    Howe, PS
    Opfermann, A
    Papadopoulos, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (03) : 713 - 727
  • [43] Global properties of twistor spaces
    de, Bartolomeis, Paolo
    Migliorini, Luca
    Nannicini, Antonella
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei, Matematica e Applicazioni, 1991, 2 (02):
  • [44] Twistor spaces and spinors over loop spaces
    Spera, Mauro
    Wurzbacher, Tilmann
    MATHEMATISCHE ANNALEN, 2007, 338 (04) : 801 - 843
  • [45] Degenerations of LeBrun Twistor Spaces
    Nobuhiro Honda
    Communications in Mathematical Physics, 2011, 301 : 749 - 770
  • [46] ON THE ALGEBRAIC STRUCTURE OF TWISTOR SPACES
    POON, YS
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1992, 36 (02) : 451 - 491
  • [47] Remarks on symplectic twistor spaces
    Rui Albuquerque
    Annali di Matematica Pura ed Applicata, 2009, 188 : 429 - 443
  • [48] TWISTOR SPACES WITH MEROMORPHIC FUNCTIONS
    POON, YS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (02) : 331 - 338
  • [49] TWISTOR SPACES AND HARMONIC MAPS
    DAVIDOV, J
    SERGEEV, AG
    RUSSIAN MATHEMATICAL SURVEYS, 1993, 48 (03) : 1 - 91
  • [50] Transversal Twistor Spaces of Foliations
    Izu Vaisman
    Annals of Global Analysis and Geometry, 2001, 19 : 209 - 234