GLOBAL STABILITY OF A DELAYED VIRAL INFECTION MODEL WITH NONLINEAR IMMUNE RESPONSE AND GENERAL INCIDENCE RATE

被引:4
|
作者
Ji, Yu [1 ]
Liu, Lan [1 ]
机构
[1] Beijing Technol & Business Univ, Dept Math, Beijing 100048, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Time delay; stability; virus infection; immune response; general incidence rate; B-VIRUS INFECTION; HEPATITIS-B; MATHEMATICAL-ANALYSIS; HOPF-BIFURCATION; DYNAMICS; DAMAGE;
D O I
10.3934/dcdsb.2016.21.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a delayed viral infection model with nonlinear immune response and general incidence rate is discussed. We prove the existence and uniqueness of the equilibria. We study the effect of three kinds of time delays on the dynamics of the model. By using the Lyapunov functional and LaSalle invariance principle, we obtain the conditions of global stabilities of the infection-free equilibrium, the immune-exhausted equilibrium and the endemic equilibrium. It is shown that an increase of the viral-infection delay and the virus-production delay may stabilize the infection-free equilibrium, but the immune response delay can destabilize the equilibrium, leading to Hopf bifurcations. Numerical simulations are given to verify the analytical results. This can provide a possible interpretation for the viral oscillation observed in chronic hepatitis B virus (HBV) and human immunodeficiency virus (HIV) infected patients.
引用
收藏
页码:133 / 149
页数:17
相关论文
共 50 条