Effects of ridge tillage and mulching on water availability, grain yield, and water use efficiency in rain-fed winter wheat under different rainfall and nitrogen conditions

被引:42
|
作者
Li, Na [1 ]
Zhou, Chunju [2 ]
Sun, Xiao [1 ]
Jing, Jianyuan [1 ]
Tian, Xiaoxiao [1 ]
Wang, Linquan [1 ]
机构
[1] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Coll Life Sci, Yangling 712100, Shaanxi, Peoples R China
来源
SOIL & TILLAGE RESEARCH | 2018年 / 179卷
基金
国家重点研发计划;
关键词
Leaf chlorophyll; Loess soil; Conservation tillage; CANOPY TEMPERATURE; SEMIARID AREAS; LOESS PLATEAU; NO-TILLAGE; CROP YIELD; MAIZE; MANAGEMENT; SYSTEM; FERTILIZATION; RADIATION;
D O I
10.1016/j.still.2018.01.003
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Tillage practices which improve water availability and water use efficiency (WUE) are beneficial for rain-fed agriculture. However, there is little consensus about the effects of ridge tillage and mulching, combined with different rainfall and N fertilization conditions, on water status and productivity in winter wheat fields. The current study aimed to investigate the effects of ridge tillage and mulching on water availability, grain yield, and WUE in rain-fed winter wheat under different rainfall and N conditions. A three-year field experiment was conducted during 2011-2014 following a split-split plot design. The experiment included two humid growing seasons (2011-2012 and 2013-2014) and one dry growing season (2012-2013). Nitrogen application rates were 0 and 180 kg N ha(-1). Tillage systems included conventional tillage (CT, as control), stalk mulching (SM), film mulching (FM), ridge tillage without mulch (RT), ridge tillage with film on ridges (RTf), and ridge tillage with film on ridges and stalk in furrows (RTfs). Results showed that averaged across growing seasons and N treatments, ridge tillage and mulching decreased evapotranspiration by 8.3%-16.2%, and increased grain yield and WUE by 4.2%-15.2% and 16.7%-36.8% compared with CT, respectively. Ridge tillage and mulching tended to increase grain yield especially when rainfall was deficient, and tended to increase WUE especially when N supply was deficient. Spike number per hectare and grain number per spike made significant contributions to grain yield when all three yield components were considered. Ridge tillage and mulching tended to increase mass based and area-based canopy moisture during regreening (stage 6 in Feekes scale, late Feb-early Mar) to grain filling stage (middle May) which was positively correlated with grain yield. Lower leaf area index (LAI) in ridge tillage and mulching treatments led to grain yield loss, but the loss was alleviated by greater total chlorophyll in flag leaves. Overall, ridge tillage and mulching improved water availability, grain yield, and WUE in rain-fed winter wheat, especially when N and rainfall were deficient.
引用
收藏
页码:86 / 95
页数:10
相关论文
共 50 条
  • [41] Effects of Reducing Nitrogen Application Rate under Different Irrigation Methods on Grain Yield, Water and Nitrogen Utilization in Winter Wheat
    Li, Jinpeng
    Wang, Zhimin
    Song, Youhong
    Li, Jincai
    Zhang, Yinghua
    AGRONOMY-BASEL, 2022, 12 (08):
  • [42] Optimizing the ridge-furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China
    Zhang, Guangxin
    Dai, Rongcheng
    Ma, Wenzhuo
    Fan, Hengzhi
    Meng, Wenhui
    Han, Juan
    Liao, Yuncheng
    AGRICULTURAL WATER MANAGEMENT, 2022, 262
  • [43] Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat
    Zhao, Wenhui
    Liu, Leizhen
    Shen, Qiu
    Yang, Jianhua
    Han, Xinyi
    Tian, Feng
    Wu, Jianjun
    WATER, 2020, 12 (08)
  • [44] Effects of water and nitrogen coupling on winter wheat yield and water or nitrogen use efficiency under high-low seedbed cultivation pattern
    Liu J.
    Si Z.
    Wu L.
    Li S.
    Sun Y.
    Wang N.
    Gao Y.
    Duan A.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (08): : 144 - 154
  • [45] Winter wheat grain yield, water use, biomass accumulation and remobilisation under tillage in the North China Plain
    Chu, Pengfei
    Zhang, Yongli
    Yu, Zhenwen
    Guo, Zengjiang
    Shi, Yu
    FIELD CROPS RESEARCH, 2016, 193 : 43 - 53
  • [46] EFFECT OF NITROGEN AND JALSHAKTI ON YIELD OF WINTER SORGHUM (SORGHUM-BICOLOR) UNDER RAIN-FED AND IRRIGATED CONDITIONS
    KHISTARIA, MK
    SHELKE, VB
    KARLE, AS
    INDIAN JOURNAL OF AGRONOMY, 1991, 36 : 83 - 85
  • [47] Effects of tillage and irrigation on water use and yield of winter wheat and summer maize
    Zhang K.
    Liu Z.
    Qiang X.
    Mi Z.
    Feng R.
    Ma Y.
    Yu X.
    Sun J.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (17): : 102 - 109
  • [48] Effects of nitrogen application on winter wheat growth, water use, and yield under different shallow groundwater depths
    She, Yingjun
    Li, Ping
    Qi, Xuebin
    Rahman, Shafeeq Ur
    Guo, Wei
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [49] Soil water consumption, water use efficiency and winter wheat production in response to nitrogen fertilizer and tillage
    Khan, Shahhaz
    Anwar, Sumera
    Shaobo, Yu
    Gao, Zhiqiang
    Sun, Min
    Ashraf, M. Yasin
    Ren, Aixia
    Yang, Zhenping
    PEERJ, 2020, 8
  • [50] Effects of Straw Strip Covering on Yield and Water Use Efficiency of Potato cultivars with Different Maturities in Rain-Fed Area of Northwest China
    Liu, Pengxia
    Chai, Shouxi
    Chang, Lei
    Zhang, Fengwei
    Sun, Wei
    Zhang, Hua
    Liu, Xiaolong
    Li, Hui
    AGRICULTURE-BASEL, 2023, 13 (02):