Large-amplitude oscillatory shear flow simulation for a FENE fluid

被引:3
|
作者
Gomez-Lopez, Aldo [1 ]
Ferrer, Victor H. [2 ]
Rincon, Eduardo [3 ]
Aguayo, Juan P. [4 ]
Chavez, Angel E. [5 ]
Vargas, Rene O. [6 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Termofluidos, Mexico City 04510, DF, Mexico
[2] Inst Politecn Nacl, ESIME Zacatenco, Mexico City 07738, DF, Mexico
[3] Morelos Soc Serv Ninez Sc, Morelos 11, Mexico City 01210, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Ciencias Aplicadas & Tecnol, Mexico City 04510, DF, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Quim, Dept Ingn Quim, Mexico City 04510, DF, Mexico
[6] Inst Politecn Nacl, ESIME Azcapotzalco, Ave Granjas 682, Mexico City 02250, DF, Mexico
关键词
LAOS; Multiscale; Maximum extension length; Oscillatory flow; Viscoelasticity; FENE model; MODEL; DYNAMICS; RHEOLOGY;
D O I
10.1007/s00397-019-01145-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, the FENE dumbbell model under small- and large-amplitude oscillatory shear flows using a micro-macro approach is presented. This approach involves the evolution of an ensemble of Brownian Configuration Fields which describes the polymer dynamics of the microscopic scale and the momentum equation describes the macroscopic scale. The Lissajous curves for the shear stress and the first normal stress difference versus the instantaneous strain or strain rate for the elastic or viscous projection are shown. The influences of the solvent/polymer viscosity ratio, the maximum extension length, and the relation between strain rate and frequency are analyzed. An important finding is the self-intersection of the Lissajous curves, which forms secondary loops for short extension lengths and high Weissenberg/Deborah dimensionless numbers ratio.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [21] Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
    Poulos, Andreas S.
    Stellbrink, Joerg
    Petekidis, George
    RHEOLOGICA ACTA, 2013, 52 (8-9) : 785 - 800
  • [22] Pade approximant for normal stress differences in large-amplitude oscillatory shear flow
    Poungthong, P.
    Saengow, C.
    Giacomin, A. J.
    Kolitawong, C.
    Merger, D.
    Wilhelm, M.
    PHYSICS OF FLUIDS, 2018, 30 (04)
  • [23] Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
    Andreas S. Poulos
    Jörg Stellbrink
    George Petekidis
    Rheologica Acta, 2013, 52 : 785 - 800
  • [24] A CONSTITUTIVE THEORY FOR POLYOLEFINS IN LARGE-AMPLITUDE OSCILLATORY SHEAR
    GIACOMIN, AJ
    JEYASEELAN, RS
    POLYMER ENGINEERING AND SCIENCE, 1995, 35 (09): : 768 - 777
  • [25] Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
    Bird, R. B.
    Giacomin, A. J.
    Schmalzer, A. M.
    Aumnate, C.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (07):
  • [26] Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response
    Gilbert, P. H.
    Giacomin, A. J.
    PHYSICS OF FLUIDS, 2016, 28 (10)
  • [27] Dynamic mechanical properties of an electrorheological fluid under large-amplitude oscillatory shear strain
    Mohammadi, Farough
    Sedaghati, Ramin
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2012, 23 (10) : 1093 - 1105
  • [28] Normal Stress Differences of Human Blood in Unidirectional Large-Amplitude Oscillatory Shear Flow
    Saengow, Chaimongkol
    Giacomin, Alan Jeffrey
    Dimitrov, Andrea Stephanie
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [29] Normal stress differences in large-amplitude oscillatory shear flow for the corotational “ANSR” model
    Alan Jeffrey Giacomin
    Robert Byron Bird
    Rheologica Acta, 2011, 50 : 741 - 752
  • [30] On a suspension of nearly spherical colloidal particles under large-amplitude oscillatory shear flow
    Khair, Aditya S.
    JOURNAL OF FLUID MECHANICS, 2016, 791