Studying edge geometry in transiently turbulent shear flows

被引:14
|
作者
Chantry, Matthew [1 ]
Schneider, Tobias M. [2 ,3 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
[3] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
instability; nonlinear dynamical systems; transition to turbulence; PLANE COUETTE-FLOW; TRANSITIONAL PIPE-FLOW; BOUNDARY; DYNAMICS; STATES; MODELS;
D O I
10.1017/jfm.2014.150
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In linearly stable shear flows at moderate Reynolds number, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories, we provide evidence that the edge of chaos does not separate state space globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.
引用
收藏
页码:506 / 517
页数:12
相关论文
共 50 条
  • [31] A Laboratory Complex for Studying the Microstructure of Turbulent Flows
    Anisiforov, K. V.
    Bodrov, E. V.
    Gavrish, A. R.
    Krivonos, O. L.
    Kuchkareva, A. S.
    Levkina, E. V.
    Nevmerzhitskii, N. V.
    Sen'kovskii, E. D.
    Sotskov, E. A.
    Tkachenko, B. I.
    Frolov, S. V.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2019, 62 (02) : 266 - 276
  • [32] A Laboratory Complex for Studying the Microstructure of Turbulent Flows
    K. V. Anisiforov
    E. V. Bodrov
    A. R. Gavrish
    O. L. Krivonos
    A. S. Kuchkareva
    E. V. Levkina
    N. V. Nevmerzhitskii
    E. D. Sen’kovskii
    E. A. Sotskov
    B. I. Tkachenko
    S. V. Frolov
    Instruments and Experimental Techniques, 2019, 62 : 266 - 276
  • [33] Comparison of turbulent particle dispersion models in turbulent shear flows
    Lain, S.
    Grillo, C. A.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 24 (03) : 351 - 363
  • [34] TURBULENT CONVECTION OF TURBULENT KINETIC ENERGY IN STRATIFIED SHEAR FLOWS
    NEUMAN, J
    ISRAEL JOURNAL OF TECHNOLOGY, 1964, 2 (01): : 47 - &
  • [35] Geometry of tracer trajectories in rotating turbulent flows
    Alards, Kim M. J.
    Rajaei, Hadi
    Del Castello, Lorenzo
    Kunnen, Rudie P. J.
    Toschi, Federico
    Clercx, Herman J. H.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (04):
  • [36] A MODEL FOR REYNOLDS STRESS IN TURBULENT SHEAR FLOWS
    NARASIMHA, R
    CURRENT SCIENCE, 1969, 38 (04): : 87 - +
  • [37] AERO-ACOUSTICS OF TURBULENT SHEAR FLOWS
    GOLDSTEIN, ME
    ANNUAL REVIEW OF FLUID MECHANICS, 1984, 16 : 263 - 285
  • [38] STRUCTURE OF TURBULENT SHEAR FLOWS - NEW LOOK
    BILGER, RW
    AIAA JOURNAL, 1977, 15 (07) : 1056 - 1056
  • [39] TURBULENT SHEAR FLOWS OVER LOW HILLS
    HUNT, JCR
    LEIBOVICH, S
    RICHARDS, KJ
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1988, 114 (484) : 1435 - 1470
  • [40] ENTRAINMENT INTERFACE IN FREE TURBULENT SHEAR FLOWS
    CHEVRAY, R
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1982, 8 (04) : 303 - 315