The evolution of the parton spectra in the modified leading logarithmic approximation

被引:5
|
作者
Brook, NH
Skillicorn, IO
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland
关键词
D O I
10.1016/S0370-2693(00)00349-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The evolution with energy scale of the partonic logarithmic scaled energy spectra is investigated in the framework of the modified leading logarithmic approximation (MLLA). The behaviour of the higher order moments is compared to a number of analytic predictions and e(+)e(-) data. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [31] Truncated moments of nonsinglet parton distributions in the double logarithmic ln2x approximation
    Kotlorz, D
    Kotlorz, A
    ACTA PHYSICA POLONICA B, 2004, 35 (02): : 705 - 721
  • [32] Next-to-modified leading logarithmic approximation corrections to single inclusive k⊥ distributions and two-particle correlations in a jet
    Perez-Ramos, Redamy
    Arleo, Francois
    Machet, Bruno
    PHYSICAL REVIEW D, 2008, 78 (01):
  • [33] BACKWARD PIN SCATTERING IN GAMMA5 THEORY - LEADING LOGARITHMIC APPROXIMATION
    PERLOVSKII, LI
    KHEIFETS, EP
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1975, 21 (02): : 234 - 238
  • [34] DOUBLE-LOGARITHMIC QUARK AND GLUON FORM-FACTORS AND THE EVOLUTION OF PARTON JETS
    KIRSCHNER, R
    PHYSICS LETTERS B, 1980, 91 (3-4) : 459 - 464
  • [35] EVOLUTION OF PARTON DENSITIES BEYOND LEADING ORDER - THE NON-SINGLET CASE
    CURCI, G
    FURMANSKI, W
    PETRONZIO, R
    NUCLEAR PHYSICS B, 1980, 175 (01) : 27 - 92
  • [36] Analytic treatment of leading-order parton evolution equations: Theory and tests
    Block, Martin M.
    Durand, Loyal
    McKay, Douglas W.
    PHYSICAL REVIEW D, 2009, 79 (01):
  • [37] Effective potential in leading logarithmic approximation in nonrenormalizable SO(N) scalar field theories
    Iakhibbaev, R. M.
    Tolkachev, D. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2025, 40 (03):
  • [38] Approximation algorithms for general packing problems with modified logarithmic potential function
    Jansen, K
    Zhang, H
    FOUNDATIONS OF INFORMATION TECHNOLOGY IN THE ERA OF NETWORK AND MOBILE COMPUTING, 2002, 96 : 255 - 266
  • [39] Approximation algorithms for general packing problems with modified logarithmic potential function
    Jansen, Klaus
    Zhang, Hu
    IFIP Advances in Information and Communication Technology, 2002, 96 : 255 - 266
  • [40] MONTE-CARLO APPROACH TO QCD JETS IN THE NEXT-TO-LEADING-LOGARITHMIC APPROXIMATION
    KATO, K
    MUNEHISA, T
    PHYSICAL REVIEW D, 1987, 36 (01) : 61 - 82