Nonlinear periodic oscillations in suspension bridges

被引:0
|
作者
Ding, ZH [1 ]
机构
[1] Univ Nevada, Las Vegas, NV 89154 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate nonlinear periodic oscillations in a suspension bridge system which is described by the nonlinearly coupled wave and beam equations. By applying the Mountain Pass Theorem to a dual variational formulation of the problem, it is proved that the suspension bridge system has at least two periodic oscillation solutions.
引用
收藏
页码:69 / 84
页数:16
相关论文
共 50 条
  • [21] ACTIVE CONTROL OF NONLINEAR OSCILLATIONS IN BRIDGES
    ABDELROHMAN, M
    NAYFEH, AH
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1987, 113 (03): : 335 - 348
  • [22] On nonlinear oscillations in a suspension bridge system
    Ding, ZG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (01) : 265 - 274
  • [23] OBSERVATIONS ON NONLINEAR DYNAMIC CHARACTERISTICS OF SUSPENSION BRIDGES
    BROWNJOHN, JMW
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1994, 23 (12): : 1351 - 1367
  • [24] Nonlinear inelastic dynamic analysis of suspension bridges
    Kim, Seung-Eock
    Thai, Huu-Tai
    ENGINEERING STRUCTURES, 2010, 32 (12) : 3845 - 3856
  • [25] Nonlinear aerostatic stability analysis of suspension bridges
    Boonyapinyo, V
    Lauhatanon, Y
    Lukkunaprasit, P
    ENGINEERING STRUCTURES, 2006, 28 (05) : 793 - 803
  • [26] Nonlinear models of suspension bridges: Discussion of the results
    Drábek, Pavel
    Holubová, Gabriela
    Matas, Aleš
    Nečesal, Petr
    Applications of Mathematics, 2003, 48 (06) : 497 - 514
  • [27] ACTIVE CONTROL OF NONLINEAR OSCILLATIONS IN BRIDGES.
    Abdel-Rohman, Mohamed
    Nayfeh, Ali H.
    Journal of Engineering Mechanics, 1987, 113 (03) : 335 - 348
  • [28] PERIODIC AND ALMOST PERIODIC OSCILLATIONS IN NONLINEAR-SYSTEMS
    CORDUNEANU, C
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1987, 97 : 196 - 203
  • [29] A "deformable section" model for the dynamics of suspension bridges. Part II: Nonlinear analysis and large amplitude oscillations
    Sepe, V
    Diaferio, M
    Augusti, G
    WIND AND STRUCTURES, 2003, 6 (06) : 451 - 470
  • [30] EXPONENTIAL DECAY OF SOLUTIONS TO A CLASS OF FOURTH-ORDER NONLINEAR HYPERBOLIC EQUATIONS MODELING THE OSCILLATIONS OF SUSPENSION BRIDGES
    Liu, Yang
    Yang, Chao
    OPUSCULA MATHEMATICA, 2022, 42 (02) : 239 - 255