Dynamics of phase separation under shear: A soluble model

被引:33
|
作者
Rapapa, NP [1 ]
Bray, AJ [1 ]
机构
[1] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1103/PhysRevLett.83.3856
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of phase separation for a binary fluid subjected to a uniform shear are solved exactly for a model in which the order parameter is generalized to an n-component vector and the large-n limit is taken. Characteristic length scales in directions parallel and perpendicular to the flow increase as (t(5)/lnt)(1/4) and (t/lnt)(1/4) respectively. The structure factor in the shear-flow plane exhibits two parallel ridges as observed in experiment.
引用
收藏
页码:3856 / 3859
页数:4
相关论文
共 50 条
  • [31] Three-dimensional numerical simulation of viscoelastic phase separation under shear: the roles of bulk and shear relaxation moduli
    Jing-yi Chen
    Zhong Jin
    Ke-da Yang
    [J]. Chinese Journal of Polymer Science, 2015, 33 : 1562 - 1573
  • [32] Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion
    Wang Heping
    Geng Xingguo
    Li Xiaoguang
    Zang Duyang
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2016, 39 (10):
  • [33] Three-dimensional Numerical Simulation of Viscoelastic Phase Separation under Shear: the Roles of Bulk and Shear Relaxation Moduli
    Jing-yi Chen
    Zhong Jin
    杨科大
    [J]. Chinese Journal of Polymer Science, 2015, 33 (11) : 1562 - 1573
  • [34] Three-dimensional numerical simulation of viscoelastic phase separation under shear: the roles of bulk and shear relaxation moduli
    Chen, Jing-yi
    Jin, Zhong
    Yang, Ke-da
    [J]. CHINESE JOURNAL OF POLYMER SCIENCE, 2015, 33 (11) : 1562 - 1573
  • [35] Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion
    Wang Heping
    Geng Xingguo
    Li Xiaoguang
    Zang Duyang
    [J]. The European Physical Journal E, 2016, 39
  • [36] Phase change in an opinion-dynamics model with separation of time scales
    Iniguez, Gerardo
    Kertesz, Janos
    Kaski, Kimmo K.
    Barrio, R. A.
    [J]. PHYSICAL REVIEW E, 2011, 83 (01):
  • [37] DYNAMICS OF PHASE-SEPARATION
    HORNER, H
    JUNGLING, K
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 36 (01): : 97 - 107
  • [38] DYNAMICS OF PHASE-SEPARATION
    GUYOT, P
    SIMON, JP
    [J]. JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1986, 83 (11-12) : 703 - 708
  • [39] VANDERWAALS LIMIT AND PHASE-SEPARATION IN A PARTICLE MODEL WITH KAWASAKI DYNAMICS
    GIACOMIN, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) : 217 - 234
  • [40] Stochastic Headway Dependent Velocity Model and Phase Separation in Pedestrian Dynamics
    Eilhardt, Christian
    Schadschneider, Andreas
    [J]. TRAFFIC AND GRANULAR FLOW '13, 2015, : 281 - 289