Enhanced thermoelectric performance of p-type Bi2Te3-based materials by suppressing bipolar thermal conductivity

被引:15
|
作者
Wu, Xianke [2 ,3 ,4 ]
Wang, Ziyu [1 ,3 ,4 ]
Jiang, Renhui [5 ,6 ]
Tian, Yuan [7 ]
Liu, Yong [1 ,2 ]
Shi, Jing [1 ,2 ]
Zhao, Wenyu [7 ]
Xiong, Rui [1 ,2 ]
机构
[1] Wuhan Univ, Minist Educ, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Suzhou Inst, Suzhou, Jiangsu, Peoples R China
[5] Wuhan Univ, Ctr Electron Microscopy, Sch Phys & Technol, MOE Key Lab Artificial Micro & Nanostruct, Wuhan, Peoples R China
[6] Wuhan Univ, Inst Adv Studies, Wuhan, Peoples R China
[7] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectric materials; Bipolar thermal conductivity; Bi0.4Sb1.6Te3; Cu0.6Ni0.4; nanoparticles; NANOCOMPOSITES; CONVERGENCE; DEVICES; BANDS;
D O I
10.1016/j.mtphys.2022.100904
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal excitation causes a surge in carrier concentration in narrow bandgap semiconductors that seriously limit its application in the high-temperature zone. Therefore, suppressing bipolar thermal conductivity and broadening the application temperature zone is vitally important for commercial Bi2Te3-based thermoelectric materials. Here, Cu0.6Ni0.4 (CN) nanoparticles synthesized via hydrothermal method are introduced into Bi0.4Sb1.6Te3 (BST) commercial materials. Then, the electrical and thermal properties of BST-CN (with x wt%, x = 0, 0.1, 0.2, 0.4, BST-x-CN) materials are systematically investigated. The results exhibited that the weighted mobility could be improved and the bipolar thermal conductivity could be suppressed for all dealt samples. The maximum and average ZT (figure of merit) values were 1.3 at 393 K and 1.17 in the temperature range of 303-483 K for BST-0.1-CN sample, which exhibited an enhancement by 28.7% and 28.6% than that of the pure sample, respectively. And the optimal ZT values are attained at higher temperatures with the CN nanoparticles contents increasing. Meanwhile, the sintered technique was optimized to enhance electron transport properties, the highest room-temperature power factor of 5.08 mW/m/K-2 was attained for the BST-0.1-CN cycle-2 sintered sample. And the optimal ZT value is 1.35 at 393 K for the BST-0.1-CN cycle-1 sintered sample. Finally, the results indicated that the thermoelectric performance could be improved and the application temperature zone could be broadened by suppressing bipolar thermal conductivity owing to the existence of CN nanoparticles.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Phonon Engineering in Bi2Te3-Based Thermoelectric Materials
    Liu Z.
    Guan X.
    Li Z.
    Ma N.
    Ma J.
    Ba Q.
    Xia A.
    Jin C.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (01): : 203 - 217
  • [22] Realizing record high performance in n-type Bi2Te3-based thermoelectric materials
    Zhu, Bin
    Liu, Xixi
    Wang, Qi
    Qiu, Yang
    Shu, Zhong
    Guo, Zuteng
    Tong, Yao
    Cui, Juan
    Gu, Meng
    He, Jiaqing
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (07) : 2106 - 2114
  • [23] Effects of SiC Nanodispersion on the Thermoelectric Properties of p-Type and n-Type Bi2Te3-Based Alloys
    Da-Wei Liu
    Jing-Feng Li
    Chen Chen
    Bo-Ping Zhang
    Journal of Electronic Materials, 2011, 40 : 992 - 998
  • [24] Effects of SiC Nanodispersion on the Thermoelectric Properties of p-Type and n-Type Bi2Te3-Based Alloys
    Liu, Da-Wei
    Li, Jing-Feng
    Chen, Chen
    Zhang, Bo-Ping
    JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (05) : 992 - 998
  • [25] Thermal Stability and Mechanical Response of Bi2Te3-Based Materials for Thermoelectric Applications
    Zheng, Yun
    Tan, Xian Yi
    Wan, Xiaojuan
    Cheng, Xin
    Liu, Zhihong
    Yan, Qingyu
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (03) : 2078 - 2089
  • [26] The Effect of Porosity and Milling Induced Defects on the Thermoelectric Properties of p-Type Bi2Te3-Based Bulks
    Zhang, Cheng Cheng
    Fan, Xi An
    Hu, Jie
    Jiang, Cheng Peng
    Feng, Bo
    Xiang, Qiu Sheng
    Li, Guang Qiang
    Li, Ya Wei
    ADVANCED ENGINEERING MATERIALS, 2016, 18 (10) : 1777 - 1784
  • [27] Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances
    Wang, Shanyu
    Li, Han
    Lu, Ruiming
    Zheng, Gang
    Tang, Xinfeng
    NANOTECHNOLOGY, 2013, 24 (28)
  • [28] Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials
    Chiritescu, Catalin
    Mortensen, Clay
    Cahill, David G.
    Johnson, David
    Zschack, Paul
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (07)
  • [29] Regulation of dynamic recrystallization in p-type Bi2Te3-based compounds leads to high thermoelectric performance and robust mechanical properties
    Chen, Shuo
    Luo, Tingting
    Yang, Zhen
    Zhong, Shenlong
    Su, Xianli
    Yan, Yonggao
    Wu, Jinsong
    Poudeu, Pierre Ferdinand Poudeu
    Zhang, Qingjie
    Tang, Xinfeng
    MATERIALS TODAY PHYSICS, 2024, 46
  • [30] Enhanced thermoelectric performance of p-type Bi2Si2Te6 enabled via synergistically optimizing carrier concentration and suppressing bipolar effect
    Shen, Dongyi
    Cheng, Ruihuan
    Wang, Wenxuan
    Li, Haiqi
    Chen, Chen
    Zhang, Qian
    Chen, Yue
    MATERIALS TODAY PHYSICS, 2023, 37