Effect of assisted hopping on thermopower in an interacting quantum dot

被引:20
|
作者
Tooski, S. B. [1 ,2 ]
Ramsak, A. [2 ,3 ]
Bulka, B. R. [1 ]
Zitko, R. [2 ,3 ]
机构
[1] Polish Acad Sci, Inst Mol Phys, PL-60179 Poznan, Poland
[2] Jozef Stefan Inst, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
thermopower; quantum dot; assisted hopping; Kondo; SINGLE-BAND MODEL; RENORMALIZATION-GROUP APPROACH; METALLIC FERROMAGNETISM; HUBBARD-MODEL; THERMOELECTRIC-MATERIALS; ANDERSON MODEL; SUPERCONDUCTIVITY; VALENCE;
D O I
10.1088/1367-2630/16/5/055001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the electrical conductance and thermopower of a quantum dot tunnel coupled to external leads described by an extension of the Anderson impurity model which takes into account the assisted hopping processes, i.e., the occupancy-dependence of the tunneling amplitudes. We provide analytical understanding based on scaling arguments and the Schrieffer-Wolff transformation, corroborated by detailed numerical calculations using the numerical renormalization group method. The assisted hopping modifies the coupling to the two-particle state, which shifts the Kondo exchange coupling constant and exponentially reduces or enhances the Kondo temperature, breaks the particle-hole symmetry, and strongly affects the thermopower. We discuss the gate-voltage and temperature dependence of the transport properties in various regimes. For a particular value of the assisted hopping parameter we find peculiar discontinuous behaviour in the mixed-valence regime. Near this value, we find very high Seebeck coefficient. We show that, quite generally, the thermopower
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Thermopower of the molecular state in a double quantum dot
    Chen, XS
    Buhmann, H
    Molenkamp, LW
    PHYSICAL REVIEW B, 2000, 61 (24) : 16801 - 16806
  • [22] Coulomb blockade and the thermopower of a suspended quantum dot
    Pogosov, A. G.
    Budantsev, M. V.
    Lavrov, R. A.
    Plotnikov, A. E.
    Bakarov, A. K.
    Toropov, A. I.
    Portal, J. C.
    JETP LETTERS, 2006, 83 (03) : 122 - 126
  • [23] Phonon-assisted thermoelectric effects in strongly interacting quantum dot
    Yang, Kai-Hua
    Zhao, Ya-Liang
    Wu, Yan-Ju
    Wu, Yu-Peng
    PHYSICS LETTERS A, 2010, 374 (28) : 2874 - 2878
  • [24] Thermopower of Kondo effect in single quantum dot systems with orbital at finite temperatures
    Sakano, R.
    Kita, T.
    Kawakami, N.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02): : 273 - 276
  • [25] Quantum dot in interacting environments
    Rylands, Colin
    Andrei, Natan
    PHYSICAL REVIEW B, 2018, 97 (15)
  • [26] Fano effect of a strongly interacting quantum dot in contact with a superconductor
    Golub, A
    Avishai, Y
    PHYSICAL REVIEW B, 2004, 69 (16): : 165325 - 1
  • [27] COULOMB-BLOCKADE OSCILLATIONS IN THE THERMOPOWER OF A QUANTUM DOT
    STARING, AAM
    MOLENKAMP, LW
    ALPHENAAR, BW
    VANHOUTEN, H
    BUYK, OJA
    MABESOONE, MAA
    BEENAKKER, CWJ
    FOXON, CT
    EUROPHYSICS LETTERS, 1993, 22 (01): : 57 - 62
  • [28] Thermopower of a Kondo spin-correlated quantum dot
    Scheibner, R
    Buhmann, H
    Reuter, D
    Kiselev, MN
    Molenkamp, LW
    PHYSICAL REVIEW LETTERS, 2005, 95 (17)
  • [29] Enhanced thermopower in PbSe nanocrystal quantum dot superlattices
    Wang, Robert Y.
    Feser, Joseph P.
    Lee, Jong-Soo
    Talapin, Dmitri V.
    Segalman, Rachel
    Majumdar, Arun
    NANO LETTERS, 2008, 8 (08) : 2283 - 2288
  • [30] Magneto-thermopower of a chaotic, ballistic quantum dot
    Buhmann, H
    Möller, S
    Godijn, SF
    Molenkamp, LW
    PHYSICA B-CONDENSED MATTER, 1998, 256 : 198 - 202