Improving N2O emission estimates with the global N2O database

被引:28
|
作者
Dorich, Christopher D. [1 ]
Conant, Richard T. [1 ]
Albanito, Fabrizio [2 ]
Butterbach-Bahl, Klaus [3 ,4 ]
Grace, Peter [5 ]
Scheer, Clemens [3 ,5 ]
Snow, Val O. [6 ]
Vogeler, Iris [7 ]
van der Weerden, Tony J. [8 ]
机构
[1] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
[2] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen, Scotland
[3] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, D-82467 Garmisch Partenkirchen, Germany
[4] Int Livestock Res Inst ILRI, Mazingira Ctr, POB 30709, Nairobi 00100, Kenya
[5] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia
[6] AgResearch, Lincoln Res Ctr, Private Bag 4749, Christchurch 8140, New Zealand
[7] Aarhus Univ, Dept Agroecol, 20 Blichers, DK-8830 Tjele, Denmark
[8] AgResearch, Invermay Res Ctr, Private Bag 50034, Mosgiel, New Zealand
关键词
NITROUS-OXIDE EMISSIONS; VARIABILITY; FREQUENCY; FLUXES; MODEL; CROP; CH4; METAANALYSIS; AGRICULTURE; MITIGATION;
D O I
10.1016/j.cosust.2020.04.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change will have dire consequences and collaborative efforts are required to quickly develop and assess mitigation solutions. Agriculture is the primary source of the powerful greenhouse gas (GHG) nitrous oxide (N2O) and an important source of GHG emissions. Due to sampling limitations, N2O measurements have traditionally been sparse; approximately 75% of sites we reviewed sampled for fewer than 50 days within a year. Nitrous oxide emissions are highly variable and short-lived peak emission periods may contribute more than 50% to annual emissions. Gap filling around these peaks, if measured at all, can result in poor estimations under the standard practice using area under the curve. Improved gap filling methods that reflect covariate data will likely reduce uncertainty and improve annual N2O estimates. The Global N2O Database was created to serve as a repository for these datasets as well as become a resource for publicly available data and analytical advances.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [21] N2O revalorization
    Chen J.-J.
    Huang H.-M.
    Nature Chemistry, 2022, 14 (8) : 846 - 848
  • [22] N2O emission from cropland in China
    Xing, GX
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1998, 52 (2-3) : 249 - 254
  • [23] COMBUSTION OF COAL AS A SOURCE OF N2O EMISSION
    WOJTOWICZ, MA
    PELS, JR
    MOULIJN, JA
    FUEL PROCESSING TECHNOLOGY, 1993, 34 (01) : 1 - 71
  • [24] Adipic acid: N2O emission control
    Chem Fibers Int, 2 (117):
  • [25] N2O emission from fertilizer use
    Lægreid, M
    Aastveit, AH
    NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : 233 - 238
  • [26] N2O Emissions of Low Emission Vehicles
    Ball, Douglas
    Moser, David
    Yang, Yonghong
    Lewis, David
    SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2013, 6 (02) : 450 - 456
  • [27] N2O emission from cropland in China
    G.X. Xing
    Nutrient Cycling in Agroecosystems, 1998, 52 : 249 - 254
  • [28] N2O EMISSION CONTROL IN COAL COMBUSTION
    WOJTOWICZ, MA
    PELS, JR
    MOULIJN, JA
    FUEL, 1994, 73 (09) : 1416 - 1422
  • [29] Effects of long-term conservation tillage on N2 and N2O emission rates and N2O emission microbial pathways in Mollisols
    Zhao, Jinxi
    Hu, Yanyu
    Gao, Wanjing
    Chen, Huaihai
    Yang, Miaoyin
    Quan, Zhi
    Fang, Yunting
    Chen, Xin
    Xie, Hongtu
    He, Hongbo
    Zhang, Xudong
    Lu, Caiyan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 908
  • [30] NO, NO2 AND N2O
    STEDMAN, DH
    CHEMICAL & ENGINEERING NEWS, 1970, 48 (46) : 49 - &