Improving N2O emission estimates with the global N2O database

被引:28
|
作者
Dorich, Christopher D. [1 ]
Conant, Richard T. [1 ]
Albanito, Fabrizio [2 ]
Butterbach-Bahl, Klaus [3 ,4 ]
Grace, Peter [5 ]
Scheer, Clemens [3 ,5 ]
Snow, Val O. [6 ]
Vogeler, Iris [7 ]
van der Weerden, Tony J. [8 ]
机构
[1] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
[2] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen, Scotland
[3] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, D-82467 Garmisch Partenkirchen, Germany
[4] Int Livestock Res Inst ILRI, Mazingira Ctr, POB 30709, Nairobi 00100, Kenya
[5] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia
[6] AgResearch, Lincoln Res Ctr, Private Bag 4749, Christchurch 8140, New Zealand
[7] Aarhus Univ, Dept Agroecol, 20 Blichers, DK-8830 Tjele, Denmark
[8] AgResearch, Invermay Res Ctr, Private Bag 50034, Mosgiel, New Zealand
关键词
NITROUS-OXIDE EMISSIONS; VARIABILITY; FREQUENCY; FLUXES; MODEL; CROP; CH4; METAANALYSIS; AGRICULTURE; MITIGATION;
D O I
10.1016/j.cosust.2020.04.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change will have dire consequences and collaborative efforts are required to quickly develop and assess mitigation solutions. Agriculture is the primary source of the powerful greenhouse gas (GHG) nitrous oxide (N2O) and an important source of GHG emissions. Due to sampling limitations, N2O measurements have traditionally been sparse; approximately 75% of sites we reviewed sampled for fewer than 50 days within a year. Nitrous oxide emissions are highly variable and short-lived peak emission periods may contribute more than 50% to annual emissions. Gap filling around these peaks, if measured at all, can result in poor estimations under the standard practice using area under the curve. Improved gap filling methods that reflect covariate data will likely reduce uncertainty and improve annual N2O estimates. The Global N2O Database was created to serve as a repository for these datasets as well as become a resource for publicly available data and analytical advances.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [1] Global and regional emissions estimates for N2O
    Saikawa, E.
    Prinn, R. G.
    Dlugokencky, E.
    Ishijima, K.
    Dutton, G. S.
    Hall, B. D.
    Langenfelds, R.
    Tohjima, Y.
    Machida, T.
    Manizza, M.
    Rigby, M.
    O'Doherty, S.
    Patra, P. K.
    Harth, C. M.
    Weiss, R. F.
    Krummel, P. B.
    van der Schoot, M.
    Fraser, P. J.
    Steele, L. P.
    Aoki, S.
    Nakazawa, T.
    Elkins, J. W.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (09) : 4617 - 4641
  • [2] Decomposition of N2O by microwave discharge of N2O/He or N2O/Ar mixtures
    Tsuji, M
    Tanoue, T
    Kumagae, J
    Nakano, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2001, 40 (12): : 7091 - 7097
  • [3] Biochar mitigates the stimulatory effects of straw incorporation on N2O emission and N2O/(N2O + N2) ratio in upland soil
    Li, Chenglin
    Wei, Zhijun
    Wang, Xiaomin
    Ma, Xiaofang
    Tang, Quan
    Zhao, Bingzi
    Shan, Jun
    Yan, Xiaoyuan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 369
  • [4] N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations
    Senbayram, M.
    Chen, R.
    Budai, A.
    Bakken, L.
    Dittert, K.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2012, 147 : 4 - 12
  • [5] NITROGEN ISOTOPE RATIO OF ATMOSPHERIC N2O AS A KEY TO THE GLOBAL CYCLE OF N2O
    YOSHIDA, N
    MATSUO, S
    GEOCHEMICAL JOURNAL, 1983, 17 (05) : 231 - 239
  • [6] Measuring denitrification and the N2O:(N2O + N2) emission ratio from terrestrial soils
    Friedl, Johannes
    Cardenas, Laura M.
    Clough, Timothy J.
    Dannenmann, Michael
    Hu, Chunsheng
    Scheer, Clemens
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2020, 47 : 61 - 71
  • [7] A quadratic configuration interaction study of N2O and N2O•-
    McCarthy, MC
    Allington, JWR
    Sullivan, KO
    MOLECULAR PHYSICS, 1999, 96 (12) : 1735 - 1737
  • [8] Contribution of dissolved N2O in total N2O emission from sewage treatment plant
    Masuda, Shuhei
    Otomo, Shohei
    Maruo, Chikako
    Nishimura, Osamu
    CHEMOSPHERE, 2018, 212 : 821 - 827
  • [9] Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation
    Shuping Qin
    Keren Ding
    Tim J. Clough
    Chunsheng Hu
    Jiafa Luo
    Biology and Fertility of Soils, 2017, 53 : 723 - 727
  • [10] The N2O•N2O, N2O•SO2, and (N2O)2•SO2 van der Waals complexes:: An ab initio theoretical analysis
    Valdés, H
    Sordo, JA
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (11): : 2062 - 2071