Note on the Toeplitz Bezoutian matrices

被引:0
|
作者
Wu, Huazhang [1 ]
Cheng, Jingwei [1 ]
机构
[1] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
来源
PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1 | 2009年
关键词
Hankel Bezoutian; Toeplitz Bezoutian; polynomial;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate some properties of the Toeplitz Bezoutian matrices. The factorization formula, an intertwining relation and the reduction formula via Vandermonde matrix similar to those of the Hankel Bezoutians are presented.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 50 条
  • [21] A note on the structured perturbation analysis for the inversion formula of Toeplitz matrices
    Wu, Jing
    Gu, Xian-Ming
    Zhao, Yong-Liang
    Huang, Yu-Yun
    Carpentieri, Bruno
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 645 - 663
  • [22] PROPERTIES OF THE ELEMENTS OF GENERALIZED BEZOUTIAN MATRICES AND THEIR INVERSES
    GOVER, MJC
    APPLICATIONS OF MATRIX THEORY, 1989, 22 : 203 - 211
  • [23] A note on the structured perturbation analysis for the inversion formula of Toeplitz matrices
    Jing Wu
    Xian-Ming Gu
    Yong-Liang Zhao
    Yu-Yun Huang
    Bruno Carpentieri
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 645 - 663
  • [24] MORE ON ROUTHS ARRAY AND BEZOUTIAN MATRICES
    BARNETT, S
    MAROULAS, J
    INTERNATIONAL JOURNAL OF CONTROL, 1978, 28 (05) : 657 - 664
  • [25] BEZOUTIAN REPRESENTATION VIA VANDERMONDE MATRICES
    CHEN, GN
    YANG, ZG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 186 : 37 - 44
  • [26] GENERALIZED BEZOUTIAN FOR A PERIODIC COLLECTION OF RATIONAL MATRICES
    COLL, C
    BRU, R
    HERNANDEZ, V
    KYBERNETIKA, 1994, 30 (04) : 393 - 402
  • [27] Bernstein-Bezoutian matrices and curve implicitization
    Marco, Ana
    Martinez, Jose-Javier
    THEORETICAL COMPUTER SCIENCE, 2007, 377 (1-3) : 65 - 72
  • [28] A note for an explicit formula for the determinant of pentadiagonal and heptadiagonal symmetric Toeplitz matrices
    Elouafi, Mohamed
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4789 - 4791
  • [29] A note on eigenvalues of random block Toeplitz matrices with slowly growing bandwidth
    Li, Yi-Ting
    Liu, Dang-Zheng
    Sun, Xin
    Wang, Zheng-Dong
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) : 2026 - 2029
  • [30] TOEPLITZ MATRICES WITH TOEPLITZ INVERSES REVISITED
    GREVILLE, TNE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 55 (DEC) : 87 - 92