Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations

被引:56
|
作者
Liu, Fei [1 ]
Shen, Jie [2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
spectral deferred correction; spectral Galerkin method; method of lines; Allen-Cahn and Cahn-Hilliard equations; PHASE-FIELD MODEL; THIN-FILM EPITAXY; PARABOLIC PROBLEMS; GALERKIN METHOD; TIME; APPROXIMATION; EVOLUTION; MOBILITY; GROWTH; ORDER;
D O I
10.1002/mma.2869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stabilized semi-implicit spectral deferred correction methods are constructed for the time discretization of Allen-Cahn and Cahn-Hilliard equations. These methods are unconditionally stable, lead to simple linear system to solve at each iteration, and can achieve high-order time accuracy with a few iterations in each time step. Ample numerical results are presented to demonstrate the effectiveness of the stabilized semi-implicit spectral deferred correction methods for solving the Allen-Cahn and Cahn-Hilliard equations. Copyright (C) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:4564 / 4575
页数:12
相关论文
共 50 条
  • [41] Effect of Space Dimensions on Equilibrium Solutions of Cahn-Hilliard and Conservative Allen-Cahn Equations
    Lee, Hyun Geun
    Yang, Junxiang
    Park, Jintae
    Kim, Junseok
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (03) : 644 - 664
  • [42] SLOWLY-MIGRATING TRANSITION LAYERS FOR THE DISCRETE ALLEN-CAHN AND CAHN-HILLIARD EQUATIONS
    GRANT, CP
    VANVLECK, ES
    NONLINEARITY, 1995, 8 (05) : 861 - 876
  • [43] Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system
    Novick-Cohen, A
    PHYSICA D, 2000, 137 (1-2): : 1 - 24
  • [44] High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics
    Church, Jon Matteo
    Guo, Zhenlin
    Jimack, Peter K.
    Madzvamuse, Anotida
    Promislow, Keith
    Wetton, Brian
    Wise, Steven M.
    Yang, Fengwei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (04) : 947 - 972
  • [45] EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY
    Zhang, Xiaoli
    Liu, Changchun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [46] On the Allen-Cahn/Cahn-Hilliard system with a geometrically linear elastic energy
    Blesgen, Thomas
    Schloemerkemper, Anja
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (02) : 241 - 266
  • [47] Finite element approximation of a degenerate Allen-Cahn/Cahn-Hilliard system
    Barrett, JW
    Blowey, JF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1598 - 1624
  • [48] The coupled Cahn-Hilliard/Allen-Cahn system with dynamic boundary conditions
    Makki, Ahmad
    Miranville, Alain
    Petcu, Madalina
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 183 - 209
  • [49] Optimal Distributed Control of a Allen-Cahn/Cahn-Hilliard System with Temperature
    Chen, Bosheng
    Liu, Changchun
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 2): : 1639 - 1684
  • [50] Discrete approximation of the Cahn-Hilliard/Allen-Cahn system with logarithmic entropy
    Gokieli, M
    Marcinkowski, L
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2003, 20 (03) : 321 - 351