Space-Efficient Randomized Algorithms for K-SUM

被引:0
|
作者
Wang, Joshua R. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
来源
ALGORITHMS - ESA 2014 | 2014年 / 8737卷
关键词
k-sum; subset-sum; hashing; time-space tradeoffs;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent results by Dinur et al. (2012) on random SUBSETSUM instances and by Austrin et al. (2013) on worst-case SUBSETSUM instances have improved the long-standing time-space tradeoff curve. We analyze a family of hash functions previously introduced by Dietzfel-binger (1996), and apply it to decompose arbitrary k-Sum instances into smaller ones. This allows us to extend the aforementioned tradeoff curve to the k-Sum problem, which is SubsetSum restricted to sets of size k. Three consequences are: a Las Vegas algorithm solving 3-Sum in O(n(2)) time and (O) over tilde(root n) space, a Monte Carlo algorithm solving k-Sum in (O) over tilde (n(k-root 2k+1)) time and (O) over tilde (n) space for k >= 3, and a Monte Carlo algorithm solving k-Sum in (O) over tilde (n(k-delta(k-1)) + n(k-1-delta(root 2k-2))) time and (O) over tilde (n(delta)) space, for delta is an element of [0, 1] and k >= 3.
引用
收藏
页码:810 / 829
页数:20
相关论文
共 50 条