Optimal information extraction in probabilistic teleportation

被引:22
|
作者
Hsu, LY [1 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan
关键词
D O I
10.1103/PhysRevA.66.012308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In Li 's work on optimal probabilistic teleportation in the two-level case [W. L. Li, C. F. Li, and G. C. Guo, Phys. Rev. A 61, 034301(2000)], the authors consider the extraction of the unknown qubit \phi>=alpha(0)\0>+alpha(1)\1> from the qubit \psi>=(1/rootN)(alpha(0)beta(0)\0>+alpha(1)beta(1)\1>). In this paper, we consider the extraction in the n-level case. It is proved that, under some specific collective unitary transformation U on \psi> and auxiliary qubits as probe, the maximal probability of successfully extracting the wanted qubit is (1/N)min{beta(i)(2)}. It is also shown that the entries of such U are independent of all unknown alpha(i). The result can also be used in the purification of the entanglement via entanglement swapping.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Probabilistic Teleportation via Entanglement
    De-Chao Li
    Zhong-Ke Shi
    International Journal of Theoretical Physics, 2008, 47 : 2645 - 2654
  • [22] Probabilistic teleportation and quantum operation
    Pati, AK
    Agrawal, P
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (08) : S844 - S848
  • [23] General probabilistic chain teleportation
    Wang, Meiyu
    Yan, Fengli
    OPTICS COMMUNICATIONS, 2011, 284 (09) : 2408 - 2411
  • [24] Causality in quantum teleportation: Information extraction and noise effects in entanglement distribution
    Hofmann, Holger F.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (03): : 323171 - 323177
  • [25] Causality in quantum teleportation: Information extraction and noise effects in entanglement distribution
    Hofmann, HF
    PHYSICAL REVIEW A, 2002, 66 (03): : 7
  • [26] Web information extraction based on probabilistic model
    Wang, Jing
    Liu, Zhi-Jing
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (06): : 847 - 855
  • [27] Optimal information dispersal for probabilistic latency targets
    Nakayama, MK
    Yener, B
    COMPUTER NETWORKS-THE INTERNATIONAL JOURNAL OF COMPUTER AND TELECOMMUNICATIONS NETWORKING, 2001, 36 (5-6): : 695 - 707
  • [28] A note on the optimal teleportation
    Yang, WL
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 617 - 619
  • [29] Optimal controlled teleportation
    Gao, T.
    Yan, F. L.
    Li, Y. C.
    EPL, 2008, 84 (05)
  • [30] Clients transparency properties in probabilistic teleportation
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
    不详
    不详
    Beijing Youdian Daxue Xuebao, 2007, 2 (42-45):