A Finiteness Theorem for the Brauer Group of K3 Surfaces in Odd Characteristic

被引:5
|
作者
Skorobogatov, Alexei N. [1 ,2 ]
Zarhin, Yuri G. [3 ,4 ,5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Weizmann Inst Sci, Dept Math, IL-7610001 Rehovot, Israel
[5] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142292, Moscow Region, Russia
基金
英国工程与自然科学研究理事会;
关键词
ABELIAN-VARIETIES; FIELDS;
D O I
10.1093/imrn/rnv030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and let k be a field finitely generated over the finite field with p elements. For any K3 surface X over k, we prove that the cokernel of the natural map Br(k) -> Br(X) is finite modulo the p-primary torsion subgroup.
引用
收藏
页码:11404 / 11418
页数:15
相关论文
共 50 条