Numerical Method for Simulation of Orientation Dynamics of Nematic Liquid Crystals in Electromagnetic Fields

被引:0
|
作者
Galev, R., V [1 ]
Kudryavtsev, A. N. [1 ,2 ]
机构
[1] Khristianovich Inst Theoret & Appl Mech SB RAS, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
LIGHT; PROPAGATION;
D O I
10.1063/5.0031271
中图分类号
O59 [应用物理学];
学科分类号
摘要
The orientation dynamics of nematic liquid crystals (NLCs) is rotation of the director, i.e. a unit vector representing the preferred direction of orientation of molecules, under the action of elastic forces and an electromagnetic field (EMF). A numerical method for solving the equations of the orientation dynamics is proposed and details of its implementation are discussed. A special attention is paid to coupling of numerical solvers for the orientation dynamics of NLCs and for Maxwell's equations describing the light propagation in an anisotropic non-uniform medium. A numerical solution of the problem of the Freedericksz transition is compared with its analytical solution, other examples of numerical simulations of physical phenomena in liquid-crystalline media interacting with electromagnetic waves are given.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] DERIVATION AND APPLICATION OF AN ALGORITHM FOR THE NUMERICAL-CALCULATION OF THE LOCAL ORIENTATION OF NEMATIC LIQUID-CRYSTALS
    KILIAN, A
    HESS, S
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1989, 44 (08): : 693 - 703
  • [42] Electromagnetic coupling in nematic liquid crystals modeled as microcontinua
    Maurizio Romeo
    Continuum Mechanics and Thermodynamics, 2019, 31 : 587 - 601
  • [43] Electromagnetic coupling in nematic liquid crystals modeled as microcontinua
    Romeo, Maurizio
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (02) : 587 - 601
  • [44] Dynamics of defect motion in nematic liquid crystal flow: Modeling and numerical simulation
    Liu, Chun
    Shen, Jie
    Yang, Xiaofeng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (06) : 1184 - 1198
  • [45] Monte carlo simulation of nematic liquid crystals
    Yang, Peipei
    Liu, Hong
    Liu, Hong
    Jisuan Wuli/Chinese Journal of Computational Physics, 2009, 26 (04): : 597 - 602
  • [46] Computational fluid dynamics for nematic liquid crystals
    Ramage, Alison
    Sonnet, Andre M.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (02) : 573 - 586
  • [47] Macroscopic dynamics of polar nematic liquid crystals
    Brand, Helmut R.
    Pleiner, Harald
    Ziebert, Falko
    PHYSICAL REVIEW E, 2006, 74 (02)
  • [48] Some notes on the dynamics of nematic liquid crystals
    Masters, AJ
    MOLECULAR PHYSICS, 1998, 95 (02) : 251 - 257
  • [49] Surface reorientation dynamics of nematic liquid crystals
    S. Faetti
    M. Nobili
    I. Raggi
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 11 : 445 - 453
  • [50] Computational fluid dynamics for nematic liquid crystals
    Alison Ramage
    André M. Sonnet
    BIT Numerical Mathematics, 2016, 56 : 573 - 586