Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks

被引:764
|
作者
Friedlingstein, Pierre [1 ]
Meinshausen, Malte [2 ,3 ]
Arora, Vivek K. [4 ]
Jones, Chris D. [5 ]
Anav, Alessandro [1 ]
Liddicoat, Spencer K. [5 ]
Knutti, Reto [6 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[2] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany
[3] Univ Melbourne, Sch Earth Sci, Melbourne, Vic, Australia
[4] Univ Victoria, Environm Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada
[5] Met Off Hadley Ctr, Exeter, Devon, England
[6] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland
关键词
Carbon cycle; Carbon dioxide; Climate change; Feedback; EARTH SYSTEM MODEL; ATMOSPHERE-OCEAN; SIMPLER MODEL; CO2; 20TH-CENTURY; WELL; BIOGEOCHEMISTRY; STABILIZATION; EMISSION; SINKS;
D O I
10.1175/JCLI-D-12-00579.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In the context of phase 5 of the Coupled Model Intercomparison Project, most climate simulations use prescribed atmospheric CO2 concentration and therefore do not interactively include the effect of carbon cycle feedbacks. However, the representative concentration pathway 8.5 (RCP8.5) scenario has additionally been run by earth system models with prescribed CO2 emissions. This paper analyzes the climate projections of 11 earth system models (ESMs) that performed both emission-driven and concentration-driven RCP8.5 simulations. When forced by RCP8.5 CO2 emissions, models simulate a large spread in atmospheric CO2; the simulated 2100 concentrations range between 795 and 1145 ppm. Seven out of the 11 ESMs simulate a larger CO2 (on average by 44 ppm, 985 +/- 97 ppm by 2100) and hence higher radiative forcing (by 0.25 W m(-2)) when driven by CO2 emissions than for the concentration-driven scenarios (941 ppm). However, most of these models already overestimate the present-day CO2, with the present-day biases reasonably well correlated with future atmospheric concentrations' departure from the prescribed concentration. The uncertainty in CO2 projections is mainly attributable to uncertainties in the response of the land carbon cycle. As a result of simulated higher CO2 concentrations than in the concentration-driven simulations, temperature projections are generally higher when ESMs are driven with CO2 emissions. Global surface temperature change by 2100 (relative to present day) increased by 3.9 degrees +/- 0.9 degrees C for the emission-driven simulations compared to 3.7 degrees +/- 0.7 degrees C in the concentration-driven simulations. Although the lower ends are comparable in both sets of simulations, the highest climate projections are significantly warmer in the emission-driven simulations because of stronger carbon cycle feedbacks.
引用
收藏
页码:511 / 526
页数:16
相关论文
共 50 条
  • [1] Robustness and uncertainties in the new CMIP5 climate model projections
    Knutti, Reto
    Sedlacek, Jan
    [J]. NATURE CLIMATE CHANGE, 2013, 3 (04) : 369 - 373
  • [2] Robustness and uncertainties in the new CMIP5 climate model projections
    Knutti R.
    Sedláček J.
    [J]. Nature Climate Change, 2013, 3 (4) : 369 - 373
  • [3] Emergent constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system models
    Wenzel, Sabrina
    Cox, Peter M.
    Eyring, Veronika
    Friedlingstein, Pierre
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2014, 119 (05) : 794 - 807
  • [4] Adapting wheat ideotypes for climate change: accounting for uncertainties in CMIP5 climate projections
    Semenov, Mikhail A.
    Stratonovitch, Pierre
    [J]. CLIMATE RESEARCH, 2015, 65 : 123 - 139
  • [5] Climate change and sectors of the surface water cycle In CMIP5 projections
    Dirmeyer, P. A.
    Fang, G.
    Wang, Z.
    Yadav, P.
    Milton, A.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (12) : 5317 - 5329
  • [6] Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Models
    Schwinger, Jorg
    Tjiputra, Jerry F.
    Heinze, Christoph
    Bopp, Laurent
    Christian, James R.
    Gehlen, Marion
    Ilyina, Tatiana
    Jones, Chris D.
    Salas-Melia, David
    Segschneider, Joachim
    Seferian, Roland
    Totterdell, Ian
    [J]. JOURNAL OF CLIMATE, 2014, 27 (11) : 3869 - 3888
  • [7] Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models
    Arora, Vivek K.
    Boer, George J.
    Friedlingstein, Pierre
    Eby, Michael
    Jones, Chris D.
    Christian, James R.
    Bonan, Gordon
    Bopp, Laurent
    Brovkin, Victor
    Cadule, Patricia
    Hajima, Tomohiro
    Ilyina, Tatiana
    Lindsay, Keith
    Tjiputra, Jerry F.
    Wu, Tongwen
    [J]. JOURNAL OF CLIMATE, 2013, 26 (15) : 5289 - 5314
  • [8] Evapotranspiration Partitioning in CMIP5 Models: Uncertainties and Future Projections
    Berg, Alexis
    Sheffield, Justin
    [J]. JOURNAL OF CLIMATE, 2019, 32 (10) : 2653 - 2671
  • [9] Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment
    Seneviratne, Sonia I.
    Wilhelm, Micah
    Stanelle, Tanja
    van den Hurk, Bart
    Hagemann, Stefan
    Berg, Alexis
    Cheruy, Frederique
    Higgins, Matthew E.
    Meier, Arndt
    Brovkin, Victor
    Claussen, Martin
    Ducharne, Agnes
    Dufresne, Jean-Louis
    Findell, Kirsten L.
    Ghattas, Josefine
    Lawrence, David M.
    Malyshev, Sergey
    Rummukainen, Markku
    Smith, Benjamin
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (19) : 5212 - 5217
  • [10] Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models
    Arora, Vivek K.
    Katavouta, Anna
    Williams, Richard G.
    Jones, Chris D.
    Brovkin, Victor
    Friedlingstein, Pierre
    Schwinger, Jorg
    Bopp, Laurent
    Boucher, Olivier
    Cadule, Patricia
    Chamberlain, Matthew A.
    Christian, James R.
    Delire, Christine
    Fisher, Rosie A.
    Hajima, Tomohiro
    Ilyina, Tatiana
    Joetzjer, Emilie
    Kawamiya, Michio
    Koven, Charles D.
    Krasting, John P.
    Law, Rachel M.
    Lawrence, David M.
    Lenton, Andrew
    Lindsay, Keith
    Pongratz, Julia
    Raddatz, Thomas
    Seferian, Roland
    Tachiiri, Kaoru
    Tjiputra, Jerry F.
    Wiltshire, Andy
    Wu, Tongwen
    Ziehn, Tilo
    [J]. BIOGEOSCIENCES, 2020, 17 (16) : 4173 - 4222