Inhibitory Effects of Lanthanum Chloride on Wear Particle-Induced Osteolysis in a Mouse Calvarial Model

被引:5
|
作者
Shang, Jiang-Yin-Zi [1 ]
Zhan, Ping [1 ]
Jiang, Chuan [2 ]
Zou, Yang [3 ]
Liu, Hucheng [1 ]
Zhang, Bin [1 ]
Dai, Min [1 ]
机构
[1] Nanchang Univ, Affiliated Hosp 1, Dept Orthoped, Nanchang, Jiangxi, Peoples R China
[2] Shangai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Orthoped Surg,Shanghai Key Lab Orthoped Impl, Shanghai, Peoples R China
[3] Chinese Peoples Liberat Army 94th Hosp, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lanthanum chloride; Wear particle; Osteolysis; Osteoclastogenesis; Calvarial model; TOTAL HIP; POLYETHYLENE PARTICLES; DIALYSIS PATIENTS; BONE LOSS; CARBONATE; TITANIUM; IMPLANT; RATS;
D O I
10.1007/s12011-015-0364-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Osteolysis is a bone disorder associated with progressive destruction of bone tissues. However, the effects of lanthanum chloride (LaCl3) on osteolysis remain unknown. Therefore, the aim of this study was to determine the effects of LaCl3 on osteolysis in vivo. In a mouse calvarial model, C57BL/6J mice were injected with wear particles with or without LaCl3. Microcomputed tomography, hematoxylin and eosin staining, and tartrate-resistant acid phosphatase staining were performed for the pathological characterization of calvariae, and eight calvariae per group were prepared for the assay of TNF-alpha, IL-1 beta, and RANKL secretion using quantitative enzyme-linked immunosorbent assay (ELISA). In mice treated with high-dose LaCl3, particle-induced osteolysis and inflammatory reaction were reduced compared with that in the vehicle-treated control. Moreover, treatment with high-dose LaCl3 suppressed the wear particle-induced decrease in bone mineral content, bone mineral density, and bone volume fraction. Bone destruction and resorption were higher in the LaCl3-treated group than in the saline-treated group but lower than those in the wear particle group. Finally, our results showed that treatment with a high dose of LaCl3 suppressed osteoclastogenesis. Thus, LaCl3 may represent a novel therapeutic agent for the treatment or prevention of wear particle-induced osteolysis and aseptic loosening.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 50 条
  • [31] An Experimental Study on the Inhibition of Wear Particle-Induced Osteolysis by Lycium barbarum Polysaccharide In Vivo
    Liu, Zige
    Feng, Lin
    Yeow, Sai Kiang
    Chen, Desheng
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [32] MiR-377 inhibits wear particle-induced osteolysis via targeting RANKL
    Li, Wei
    Wang, Xiaomeng
    Chang, Li
    Wang, Fei
    CELL BIOLOGY INTERNATIONAL, 2019, 43 (06) : 658 - 668
  • [33] Oestrogen deficiency modulates particle-induced osteolysis
    Nich C.
    Langlois J.
    Marchadier A.
    Vidal C.
    Cohen-Solal M.
    Petite H.
    Hamadouche M.
    Arthritis Research & Therapy, 13 (3):
  • [34] The effect of simvastatin on polyethylene particle-induced osteolysis
    von Knoch, F
    Heckelei, A
    Wedemeyer, C
    Saxler, G
    Hilken, G
    Henschke, F
    Löer, F
    von Knoch, M
    BIOMATERIALS, 2005, 26 (17) : 3549 - 3555
  • [35] Inhibitory effects of norcantharidin on titanium particle-induced osteolysis, osteoclast activation and bone resorption via MAPK pathways
    Wang, Jing
    Chen, Gang
    Yang, Xue
    Dou, Wenwen
    Mao, Yuhang
    Zhang, Yudie
    Shi, Xiaotian
    Xia, Yehua
    You, Qiuyi
    Liu, Mei
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 129
  • [36] Decrease in Particle-Induced Osteolysis in Ovariectomized Mice
    Nich, Christophe
    Marchadier, Arnaud
    Sedel, Laurent
    Petite, Herve
    Vidal, Catherine
    Hamadouche, Moussa
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2010, 28 (02) : 178 - 183
  • [37] A comparison of the antiresorptive effects of bisphosphonates and statins on polyethylene particle-induced osteolysis
    von Knoch, F
    Wedemeyer, C
    Heckelei, A
    Sprecher, CH
    Saxler, G
    Hilken, G
    Henschke, F
    Bereiter, H
    Löer, F
    von Knoch, M
    BIOMEDIZINISCHE TECHNIK, 2005, 50 (06): : 195 - 200
  • [38] Jatrorrhizine Hydrochloride Suppresses RANKL-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis
    Li, Hui
    Wang, Jing
    Sun, Qiwen
    Chen, Gang
    Sun, Shengnan
    Ma, Xuemei
    Qiu, Haiwen
    Liu, Xuerong
    Xu, Liangyi
    Liu, Mei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)
  • [39] MgO Nanoparticles Protect against Titanium Particle-Induced Osteolysis in a Mouse Model Because of Their Positive Immunomodulatory Effect
    Yin, Yong
    Huang, Qianli
    Yang, Minghua
    Xiao, Jian
    Wu, Hong
    Liu, Yong
    Li, Qingxiang
    Huang, Weidong
    Lei, Guanghua
    Zhou, Kun
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (05) : 3005 - 3014
  • [40] Anti-inflammatory drug-eluting implant model system to prevent wear particle-induced periprosthetic osteolysis
    Rivera, Melissa C.
    Perni, Stefano
    Sloan, Alastair
    Prokopovich, Polina
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2019, 14 : 1069 - 1084