Convergence for Slow Discrete Dynamical Systems with Identity Linearization

被引:0
|
作者
Sotolongo, Alina [1 ]
Solis, Francisco J. [1 ]
机构
[1] CIMAT, Guanajuato 36000, Gto, Mexico
基金
新加坡国家研究基金会; 中国国家自然科学基金; 英国医学研究理事会; 英国惠康基金; 美国国家卫生研究院; 欧盟地平线“2020”;
关键词
Slow systems; Convergence; Nonhyperbolic equilibria; REDUCTION;
D O I
10.1007/s12591-019-00501-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we give sufficient and necessary conditions for convergence for nonhyperbolic fixed points of dynamical systems of arbitrary dimension whose linearization around zero is the identity function. To achieve this goal, we first rewrite the dynamical system in terms of spherical polar coordinates and by approximation of the radial iteration function we discover a necessary condition depending on a remarkable angular function. Searching for conditions that are sufficient, we discover more angular functions that together with the first one gives a complete set that plays the role of the iteration derivative for unidimensional discrete systems.
引用
收藏
页码:885 / 891
页数:7
相关论文
共 50 条