In this work we give sufficient and necessary conditions for convergence for nonhyperbolic fixed points of dynamical systems of arbitrary dimension whose linearization around zero is the identity function. To achieve this goal, we first rewrite the dynamical system in terms of spherical polar coordinates and by approximation of the radial iteration function we discover a necessary condition depending on a remarkable angular function. Searching for conditions that are sufficient, we discover more angular functions that together with the first one gives a complete set that plays the role of the iteration derivative for unidimensional discrete systems.