A study of the dynamics of λ sin z

被引:11
|
作者
Domínguez, P
Sienra, G
机构
[1] BUAP, Fac Ciencias Fis Mat, Puebla 72570, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
来源
关键词
Fatou set; Julia set; periodic cycles; holomorphic motions; exponential tracts; buried points;
D O I
10.1142/S0218127402006199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the dynamics of the family lambda sin z for some values of lambda. First we give a description of the Fatou set for values of lambda inside the unit disc. Then for values of lambda on the unit circle of parabolic type (lambda = exp(i2pitheta), theta = p/q, (p, q) = 1), we prove that if q is even, there is one q-cycle of Fatou components, if q is odd, there are two q cycles of Fatou components. Moreover the Fatou components of such cycles are bounded. For lambda as above there exists a component D-q. tangent to the unit disc at lambda of a hyperbolic component. There are examples for lambda such that the Julia set is the whole complex plane. Finally, we discuss the connectedness locus and the existence of buried components for the Julia set.
引用
收藏
页码:2869 / 2883
页数:15
相关论文
共 50 条
  • [41] Numerical Study of Z-pinch Dynamics at Different Working Regimes
    Raeisdana, A.
    Kiai, S. M. Sadat
    Sadighzadeh, A.
    Nasrabadi, M. Nasri
    JOURNAL OF FUSION ENERGY, 2014, 33 (06) : 746 - 751
  • [42] ON THE DYNAMICS OF THE McMULLEN FAMILY R(z) = z(m)
    Steinmetz, Norbert
    CONFORMAL GEOMETRY AND DYNAMICS, 2006, 10 : 159 - 183
  • [43] 复变函数arc sin z算法的数学基础
    熊规景
    数学物理学报, 1986, (03) : 347 - 357
  • [44] On the non-escaping set of e2πiθ sin (z)
    Gaofei Zhang
    Israel Journal of Mathematics, 2008, 165 : 233 - 252
  • [45] On the non-escaping set of e2πiθ sin(z)
    Zhang, Gaofei
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 165 (01) : 233 - 252
  • [46] Dynamics of the functions fμ(z) = z exp (z plus μ) with the real parameter
    Deng, Xiaocheng
    Meng, Fanning
    Lin, Jianming
    Yuan, Wenjun
    SPRINGERPLUS, 2016, 5
  • [47] e(z): DYNAMICS AND BIFURCATIONS
    Devaney, Robert L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (02): : 287 - 308
  • [48] Analyzing the dynamics of a Z specification
    Ciancarini, P
    Mascolo, C
    DESIGN AND IMPLEMENTATION OF SYMBOLIC COMPUTATION SYSTEMS, 1996, 1128 : 138 - 149
  • [50] Proto-Sin: A Case Study
    Jensen, Steven J.
    AMERICAN CATHOLIC PHILOSOPHICAL QUARTERLY, 2019, 93 (01) : 161 - 171