A study of the dynamics of λ sin z

被引:11
|
作者
Domínguez, P
Sienra, G
机构
[1] BUAP, Fac Ciencias Fis Mat, Puebla 72570, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
来源
关键词
Fatou set; Julia set; periodic cycles; holomorphic motions; exponential tracts; buried points;
D O I
10.1142/S0218127402006199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the dynamics of the family lambda sin z for some values of lambda. First we give a description of the Fatou set for values of lambda inside the unit disc. Then for values of lambda on the unit circle of parabolic type (lambda = exp(i2pitheta), theta = p/q, (p, q) = 1), we prove that if q is even, there is one q-cycle of Fatou components, if q is odd, there are two q cycles of Fatou components. Moreover the Fatou components of such cycles are bounded. For lambda as above there exists a component D-q. tangent to the unit disc at lambda of a hyperbolic component. There are examples for lambda such that the Julia set is the whole complex plane. Finally, we discuss the connectedness locus and the existence of buried components for the Julia set.
引用
收藏
页码:2869 / 2883
页数:15
相关论文
共 50 条
  • [1] Dynamics of Iterations of the Newton Map of sin(z)
    Cloutier, Aimee
    Dwyer, Jerry
    Barnard, Roger W.
    Stone, William D.
    Williams, G. Brock
    SYMMETRY-BASEL, 2024, 16 (02):
  • [2] On the dynamics of e2πiθ sin(z)
    Zhang, GF
    ILLINOIS JOURNAL OF MATHEMATICS, 2005, 49 (04) : 1171 - 1179
  • [3] Roots of sin z=z
    Hillman, AP
    Salzer, HE
    PHILOSOPHICAL MAGAZINE, 1943, 34 (235): : 575 - 575
  • [4] On the zeros of the partial sums of cos(z) and sin(z)
    Kappert, M
    NUMERISCHE MATHEMATIK, 1996, 74 (04) : 397 - 417
  • [5] Zeros of the partial sums of cos(z) and sin(z) II
    Varga, RS
    Carpenter, AJ
    NUMERISCHE MATHEMATIK, 2001, 90 (02) : 371 - 400
  • [6] Zeros of the partial sums of cos (z) and sin (z). I
    Richard S. Varga
    Amos J. Carpenter
    Numerical Algorithms, 2000, 25 : 363 - 375
  • [7] Zeros of the partial sums of cos(z) and sin(z). III
    Varga, Richard S.
    Carpenter, Amos J.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) : 298 - 313
  • [8] Zeros of the partial sums of $\cos(z)$ and $\sin(z)$ II
    Richard S. Varga
    Amos J. Carpenter
    Numerische Mathematik, 2001, 90 : 371 - 400
  • [9] Zeros of the partial sums of cos(z) and sin(z).: I
    Varga, RS
    Carpenter, AJ
    NUMERICAL ALGORITHMS, 2000, 25 (1-4) : 363 - 375
  • [10] Representations of the Functions Sinh Z, Cosh Z, Sin Z, and Cos Z by Continued Fractions
    M. M. Pahirya
    Ukrainian Mathematical Journal, 2018, 70 : 786 - 805